PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 4-\& Plate - rear extension cavity wall over doors				Job no.739	
	Calcs for				Start page no./Revision 1	
	Calcs by SB	Calcs date 31/05/2023	Checked by DB	Checked date 31/05/2023	Approved by SB	Approved date 31/05/2023

STEEL MASONRY SUPPORT

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 1.0.03

Design summary

Overall design status PASS
Overall design utilisation
0.771

Description	Unit	Allowable	Applied	Utilisation	Result
Heel moment	$\mathrm{kNm} / \mathrm{m}$	2.933	0.150	0.051	PASS
Deflection	mm	1.8	0.1	0.029	PASS
Weld capacity	kN / m	945.2	240.6	0.255	PASS
Shear force (major axis)	kN	310.4	45.8	0.148	PASS
Bending (major-axis)	kNm	95.0	57.3	0.603	PASS
Bending (minor axis)	kNm	38.8	1.9	0.048	PASS
Warping	kNm	18.9	1.1	0.056	PASS
Bending and torsion				0.735	PASS
Plastic interaction				0.239	PASS
Torsion beam rotation	deg	2.00	1.39	0.695	PASS
Torsion beam deflection	mm	10.0	7.7	0.771	PASS

Partial factors - Section 6.1

Resistance of cross-sections
$\gamma_{M 0}=1$
Resist. of members to instability
$\gamma_{\mathrm{M} 1}=1$
Resistance of joints
Partial factor for permanent action
$\gamma_{\mathrm{M} 2}=1.25$

Partial factor for variable action
$\gamma_{G}=1.35$

Partial factor for permanent action (favourable)
$\gamma_{Q}=1.50$

Partial factor for variable action (favourable)
$\gamma_{\mathrm{G}_{\text {_fav }}}=\mathbf{1 . 0 0}$
$\gamma_{Q_{-} f a v}=\mathbf{0 . 0 0}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF pport@planningapplications.com 07922 148701	Project BEAM 4 - \& Plate - rear extension cavity wall over doors				Job no.739	
	Calcs for Connor McKitrich				Start page no./Revision 2	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 31 / 05 / 2023 \end{aligned}$	Checked by DB	Checked date $31 / 05 / 2023$	Approved by SB	Approved date 31/05/2023

Steel beam section details

Torsion beam section type
Nominal yield strength
Nominal ultimate tensile strength
Masonry support section details
Section type
Steel grade - EN 10025-2:2004
Nominal thickness
Nominal yield strength
Nominal ultimate tensile strength
Modulus of elasticity
Total length of plate
Length of plate beyond outer edge of torsion beam

Supported materials detail

Density of masonry on torsion beam
Width of masonry on torsion beam
Height of masonry on torsion beam
Eccentricity of torsion beam masonry
Eccentricity of torsion beam material
Add perm. force torsion beam (not masonry)
Add var. force torsion beam (not masonry)
Density of masonry on support beam
Width of masonry on support beam
Height of masonry on support beam
Eccentricity of support beam masonry

Geometry

Cavity width
Supported width of masonry
Biaxial stress effects in the plate (SCI-P-110)
Maximum overall bending moment
Dist to NA combined section (CoG torsion beam)
Second moment of area of combined section
Elastic section modulus of combined section
Section modulus of plate
Force of masonry on support plate
Bending at heel
Moment capacity of plate

Longitudinal stress due to overall bending
Constant relating to Von Mises curve
Transverse bending stress ratio limit
Transverse bending stress ratio

Deflection of plate

Unfactored force on support angle

UB $254 \times 146 \times 43$
$f_{y}=f_{y, t b}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{u}=f_{u, t b}=410 \mathrm{~N} / \mathrm{mm}^{2}$

Plate 280x8(125)
S275
$\mathrm{t}_{\text {nom, } \mathrm{sb}}=\mathrm{t}_{\text {plate }}=\mathbf{8} \mathrm{mm}$
$\mathrm{f}_{\mathrm{y}, \mathrm{sb}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}, \mathrm{sb}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$E_{\text {sb }}=210000 \mathrm{~N} / \mathrm{mm}^{2}$
$I_{\text {plate }}=280 \mathrm{~mm}$
$\mathrm{I}_{\mathrm{h}}=125 \mathrm{~mm}$
$\rho_{\mathrm{m}, \mathrm{tb}}=20.0 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{b}_{\mathrm{m}, \mathrm{tb}}=100 \mathrm{~mm}$
$\mathrm{h}_{\mathrm{m}, \mathrm{tb}}=\mathbf{6 0 0} \mathrm{mm}$
$\mathrm{e}_{\text {load }, \mathrm{tb}}=105 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{tb}}=57 \mathrm{~mm}$
$\mathrm{G}_{\mathrm{k}, \mathrm{add}, \mathrm{tb}}=5.0 \mathrm{kN} / \mathrm{m}$
$Q_{k, a d d, t b}=5.0 \mathrm{kN} / \mathrm{m}$
$\rho_{\mathrm{m}, \mathrm{sb}}=20.0 \mathrm{kN} / \mathrm{m}^{3}$
$b_{m, s b}=102 \mathrm{~mm}$
$\mathrm{h}_{\mathrm{m}, \mathrm{sb}}=\mathbf{6 0 0} \mathrm{mm}$
$\mathrm{e}_{\text {load }, \mathrm{sb}}=91 \mathrm{~mm}$
$\mathrm{b}_{\text {cavity }}=\mathbf{1 0 0} \mathbf{~ m m}$
$\mathrm{d}_{\mathrm{m}}=\mathrm{l}_{\mathrm{h}}+\mathrm{t}_{\text {shim }}+\mathrm{e}_{\mathrm{tb}}-\mathrm{b}_{\text {cavity }}=\mathbf{8 2} \mathbf{~ m m}$
$M_{y, E d}=57.3 \mathrm{kNm}$
$Z_{\text {na }, \text { all }}=\left(h_{t b}+t_{\text {plate }}\right) \times A_{p l} /\left(2 \times\left(A_{t b}+A_{p l}\right)\right)=39 \mathrm{~mm}$
$l_{\mathrm{y}, \mathrm{all}}=\left(\mathrm{l}_{\mathrm{ytb}}+A_{\mathrm{tb}} \times \mathrm{Z}_{\mathrm{na}, \mathrm{all}}{ }^{2}\right)+A_{\mathrm{pl}} \times\left(\mathrm{h}_{\mathrm{tb}} / 2+\mathrm{t}_{\text {plate }} / 2-\mathrm{Z}_{\mathrm{na}, \mathrm{all}}\right)^{2}=9390 \mathrm{~cm}^{4}$
$Z_{y, a l l}=I_{y, \text { all }} /\left(h_{\text {tb }} / 2+t_{\text {plate }}-Z_{\text {na,all }}\right)=948.82 \mathrm{~cm}^{3}$
$Z_{y, \text { plate }}=1 \mathrm{~m} \times \mathrm{t}_{\text {plate }}{ }^{2} /(6 \times 1 \mathrm{~m})=10.67 \mathrm{~cm}^{3} / \mathrm{m}$
$F_{1}=\left(b_{m, s b} \times h_{m, s b} \times \rho_{m, s b}+G_{k, a d d, s b}\right) \times \gamma_{G}+Q_{k, a d d, s b} \times \gamma_{Q}=1.7 \mathrm{kN} / \mathrm{m}$
$M_{y, E d, \text { plate }}=F_{1} \times e_{\text {load,sb }}=0.2 \mathrm{kNm} / \mathrm{m}$
$M_{y, \text { Rd, plate }}=Z_{y, \text { plate }} \times f_{y, \text { sb }} / \gamma_{\mathrm{M}}=2.9 \mathrm{kNm} / \mathrm{m}$
PASS - Moment capacity of plate exceeds applied moment
$\sigma_{1}=M_{y, E d} / Z_{y, \text { all }}=60.4 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{c}_{\mathrm{fp}}=\left(4 \times \mathrm{f}_{\mathrm{y}, \mathrm{sb}}{ }^{2}-3 \times \sigma_{1}{ }^{2}\right)^{0.5}=\mathbf{5 4 0 . 0} \mathrm{N} / \mathrm{mm}^{2}$
$\alpha_{\mathrm{ts}}=\left(\mathrm{c}_{\mathrm{fp}}{ }^{2}-\sigma_{1}{ }^{2}\right) /\left(2 \times \mathrm{c}_{\mathrm{fp}} \times \mathrm{f}_{\mathrm{y}, \mathrm{sb}}\right)=0.970$
$\alpha_{\mathrm{ls}}=M_{\mathrm{y}, \mathrm{Ed}, \text { plate }} / M_{\mathrm{y}, \text { Rd,plate }}=\mathbf{0 . 0 5 1}$
PASS - Transverse bending stress ratio less than allowable limit
$F_{1 \text { ser }}=\left(b_{m, s b} \times h_{m, s b} \times \rho_{m, s b}+G_{k, a d d, s b}\right)+Q_{k, a d d, s b}=1.2 \mathrm{kN} / \mathrm{m}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 4-\& Plate - rear extension cavity wall over doors				Job no. 739	
	Calcs for Connor McKitrich				Start page no./Revision 3	
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 31 / 05 / 2023 \end{array}$	Checked by DB	$\begin{aligned} & \hline \text { Checked date } \\ & 31 / 05 / 2023 \end{aligned}$	Approved by SB	$\begin{gathered} \hline \text { Approved date } \\ 31 / 05 / 2023 \end{gathered}$

```
Distance from weld to load position
\(\mathrm{a}_{\mathrm{m}}=\mathrm{e}_{\text {load,sb }}=91 \mathrm{~mm}\)
Length of load resultant to edge of plate
Dist from weld to load position as ratio of length
Effective second moment of area
Deflection at end of plate
Deflection limit
```

$\mathrm{a}_{\mathrm{m}}=\mathrm{e}_{\text {load }, \mathrm{sb}}=91 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{m}}=\mathrm{I}_{\mathrm{h}}-\mathrm{e}_{\text {load, }, \text { b }}=34 \mathrm{~mm}$
$a_{1}=a_{m} /\left(a_{m}+b_{m}\right)=0.728$
$l_{\text {eff_def }}=t_{\text {plate }}{ }^{3} / 12=42667 \mathrm{~mm}^{4} / \mathrm{m}$
$\delta=\left(\mathrm{a}_{1}^{2} \times\left(3-\mathrm{a}_{1}\right) / 6\right) \times\left(\mathrm{F}_{1 \text { ser }} \times\left(\mathrm{a}_{\mathrm{m}}+\mathrm{b}_{\mathrm{m}}\right)^{3}\right) /\left(\mathrm{E}_{\text {sb }} \times \mathrm{l}_{\text {eff_def }}\right)=0.05 \mathrm{~mm}$
$\delta_{\text {lim }}=\min \left(\left(1+d_{m} / b_{\text {cavity }}\right) \times 1 \mathrm{~mm}, 2 \mathrm{~mm}\right)=1.82 \mathrm{~mm}$

PASS - Deflection is within specified criteria
Weld details - assume a full length weld and that the plate acts as a propped cantilever with the prop at the weld position and the fixed end at the centre of the torsion beam

Shear force at weld position
Maximum possible force in plate
Longitudinal shear between beam and plate
Horizontal shear between beam and plate
Resultant weld force
Leg length of weld
Throat thickness of weld
Length of weld per metre run
Ultimate tensile strength used for weld
Correlation factor (table 4.1)
Design shear strength
Design resistance of weld

Eccentricities

Distance to shear centre of torsion beam
Eccentricity of support beam masonry
Eccentricity of torsion beam masonry
Eccentricity of support beam
Eccentricity of torsion beam
Torsional loading ULS (unfavourable)
Loading of support beam masonry
Loading of torsion beam masonry
Self weight of support beam
Self weight of torsion beam
Torsional loading ULS (favourable)
Loading of support beam masonry
Loading of torsion beam masonry

Self weight of support beam
Self weight of torsion beam
Torsional loading SLS (unfavourable)
Loading of support beam masonry
Loading of torsion beam masonry
Self weight of support beam
Self weight of torsion beam
$\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{1} \times \max \left(\left(1+\left(3 \times \mathrm{e}_{\text {load, sb }}\right) /\left(2 \times \mathrm{b}_{\text {tb }} / 2\right)\right), 1.4\right)=4.7 \mathrm{kN} / \mathrm{m}$
$F_{p}=\left(I_{\mathrm{h}}+\min \left(\mathrm{b}_{\mathrm{tt}}, I_{\text {plate }}-\mathrm{I}_{\mathrm{h}}\right)\right) \times \mathrm{t}_{\text {plate }} \times \mathrm{f}_{\mathrm{y}, \mathrm{sb}}=599.1 \mathrm{kN}$
$F_{1}=2 \times F_{p} / L=239.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{F}_{\mathrm{h}}=\mathrm{F}_{1} \times \mathrm{e}_{\text {load }, \text { sb }} /\left(\mathrm{s}_{\text {weld }} / 2+\mathrm{t}_{\text {plate }} / 2\right)=21.5 \mathrm{kN} / \mathrm{m}$
$F_{w, E d}=\left(F_{A}^{2}+F_{1}{ }^{2}+F_{h^{2}}\right)^{0.5}=240.6 \mathrm{kN} / \mathrm{m}$
$S_{\text {weld }}=6.00 \mathrm{~mm}$
$a_{\text {weld }}=1 / \sqrt{ }(2) \times s_{\text {weld }}=4.24 \mathrm{~mm}$
$l_{\text {weld }}=\mathbf{1 0 0 0 ~ m m} / \mathrm{m}$
$f_{u, \text { weld }}=\min \left(f_{u, s b}, f_{u, t b}\right)=410.0 \mathrm{~N} / \mathrm{mm}^{2}$
$\beta_{w}=0.85$
$f_{v w, d}=f_{u, \text { weld }} /\left(\sqrt{ }(3) \times \beta_{w} \times \gamma_{M 2}\right)=222.8 \mathrm{~N} / \mathrm{mm}^{2}$
$F_{w, R d}=f_{v w, d} \times a_{\text {weld }}=945.2 \mathrm{kN} / \mathrm{m}$
PASS - weld capacity exceeds applied force
$\mathrm{e}_{\mathrm{o}, \mathrm{tb}}=\mathbf{0} \mathrm{mm}$
$e_{m, s b}=e_{\text {load }, s b}+b_{\text {tb }} / 2=165 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{m}, \mathrm{tb}}=\mathrm{b}_{\mathrm{tb}} / 2-\mathrm{e}_{\text {load }, \mathrm{tb}}=-\mathbf{3 1} \mathrm{mm}$
$\mathrm{e}_{\mathrm{b}, \mathrm{sb}}=\mathrm{c}_{\mathrm{zsb}}+\mathrm{b}_{\mathrm{tb}} / 2=59 \mathrm{~mm}$
$e_{b, t b}=0 \mathrm{~mm}$
$\mathrm{w}_{\mathrm{sb}}=\left(\mathrm{h}_{\mathrm{m}, \mathrm{sb}} \times \mathrm{b}_{\mathrm{m}, \mathrm{sb}} \times \rho_{\mathrm{m}, \mathrm{sb}}\right) \times \gamma_{\mathrm{G}}=1.65 \mathrm{kN} / \mathrm{m}$
$W_{t b}=\left(h_{m, t b} \times b_{m, t b} \times \rho_{m, t b}+G_{k, a d d, t b}\right) \times \gamma_{G}+Q_{k, a d d, t b} \times \gamma_{Q}=15.87 \mathrm{kN} / \mathrm{m}$
$W_{s w, s b}=A_{p l} \times \rho_{S E C 3} \times g_{\text {acc }} \times \gamma_{G}=0.23 \mathrm{kN} / \mathrm{m}$
$w_{s w, t b}=A_{\text {tb }} \times \rho_{\text {sec }} \times g_{\text {acc }} \times \gamma_{G}=0.57 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\text {sb_fav }}=\left(\mathrm{h}_{\mathrm{m}, \mathrm{sb}} \times \mathrm{b}_{\mathrm{m}, \mathrm{sb}} \times \rho_{\mathrm{m}, \mathrm{sb}}\right) \times \gamma_{\mathrm{G}_{-} \text {fav }}=1.22 \mathrm{kN} / \mathrm{m}$
$W_{\text {tb_fav }}=\left(h_{m, t b} \times b_{m, t b} \times \rho_{m, t b}+G_{k, a d d, t b}\right) \times \gamma \mathrm{G}_{-} f a v+Q_{k, a d d, t b} \times \gamma_{Q_{-} f a v}=\mathbf{6 . 2 0}$
kN/m
$W_{\text {sw,sb_fav }}=A_{\text {pl }} \times \rho_{S E C 3} \times g_{\text {acc }} \times \gamma_{G_{-} f a v}=0.17 \mathrm{kN} / \mathrm{m}$
$W_{\text {sw,tb_fav }}=A_{\text {tb }} \times \rho_{\text {SEC }} \times g_{\text {acc }} \times \gamma_{G_{-} f a v}=\mathbf{0 . 4 2} \mathbf{~ k N} / \mathrm{m}$
$w_{s b, \text { ser }}=h_{m, s b} \times b_{m, s b} \times \rho_{m, s b}=1.22 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\mathrm{tb}, \mathrm{ser}}=\mathrm{h}_{\mathrm{m}, \mathrm{tb}} \times \mathrm{b}_{\mathrm{m}, \mathrm{tb}} \times \rho_{\mathrm{m}, \mathrm{tb}}+\mathrm{G}_{\mathrm{k}, \mathrm{add}, \mathrm{tb}}+\mathrm{Q}_{\mathrm{k}, \mathrm{add}, \mathrm{tb}}=11.20 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\mathrm{sw}, \mathrm{sb}, \text { ser }}=\mathrm{A}_{\mathrm{pl}} \times \rho_{\mathrm{SEC}} \times \mathrm{g}_{\mathrm{acc}}=\mathbf{0 . 1 7} \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\mathrm{sw}, \text { tb }, \text { ser }}=\mathrm{A}_{\mathrm{tb}} \times \rho_{\mathrm{SEC}} \times \mathrm{g}_{\mathrm{acc}}=0.42 \mathrm{kN} / \mathrm{m}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project BEAM 4 - \& Plate - rear extension cavity wall over doors				Job no.739	
	Connor McKitrich				Start page no./Revision 4	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 31 / 05 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{\|l} \text { Checked date } \\ 31 / 05 / 2023 \end{array}$	Approved by SB	Approved date 31/05/2023

Torsional effects

Applied torque (ULS +ve ecc. unfav, -ve ecc. fav) $\quad \mathrm{T}_{\mathrm{d}, \mathrm{w}, \mathrm{fav} 1}=\mathrm{abs}\left(\mathrm{w}_{\mathrm{sb}} \times \mathrm{e}_{\mathrm{m}, \mathrm{sb}}+\mathrm{w}_{\mathrm{tb} _} \mathrm{fav} \times \mathrm{e}_{\mathrm{m}, \mathrm{tb}}+\mathrm{w}_{\mathrm{sw}, \mathrm{sb}} \times \mathrm{e}_{\mathrm{b}, \mathrm{sb}}+\mathrm{w}_{\mathrm{sw}, \mathrm{tb}} \times \mathbf{e}_{\mathrm{b}, \mathrm{tb}}\right)=$ $0.09 \mathrm{kNm} / \mathrm{m}$
Applied torque (ULS +ve ecc. fav, -ve ecc. unfav)
$\mathrm{T}_{\mathrm{d}, \mathrm{w}, \mathrm{fav} 2}=\mathrm{abs}\left(\mathrm{w}_{\mathrm{sb} _} \mathrm{fav} \times \mathbf{e}_{\mathrm{m}, \mathrm{sb}}+\mathrm{w}_{\mathrm{tb}} \times \mathbf{e}_{\mathrm{m}, \mathrm{tb}}+\mathrm{w}_{\mathrm{sw}, \text { sb_fav }} \times \mathbf{e}_{\mathrm{b}, \mathrm{sb}}+\mathrm{w}_{\mathrm{sw}, \mathrm{tb} _ \text {fav }} \times\right.$
$\left.\mathrm{e}_{\mathrm{b}, \mathrm{tb}}\right)=0.29 \mathrm{kNm} / \mathrm{m}$
Applied torque (ULS all unfavourable) $\quad T_{d, w}=a b s\left(w_{s b} \times e_{m, s b}+w_{t b} \times e_{m, t b}+w_{s w, s b} \times e_{b, s b}+w_{s w, t b} \times e_{b, t b}\right)=\mathbf{0 . 2 1}$
kNm/m
Total torque (ULS)
$T_{d}=\max \left(T_{d, w}, T_{d, w, f a v 1}, T_{d, w, f a v 2}\right) \times L=1.43 \mathrm{kNm}$
Applied torque (SLS)

Total torque (SLS)
$T_{d, w, s e r}=a b s\left(w_{s b, s e r} \times e_{m, s b}+w_{t b, s e r} \times e_{m, t b}+w_{s w, s b, s e r} \times e_{b, s b}+w_{s w, t b, s e r} \times\right.$
$\left.\mathrm{e}_{\mathrm{b}, \mathrm{tb}}\right)=0.14 \mathrm{kNm} / \mathrm{m}$
$\mathrm{T}_{\mathrm{d}, \text { ser }}=\mathrm{T}_{\mathrm{d}, \mathrm{w}, \text { ser }} \times \mathrm{L}=\mathbf{0 . 7 0} \mathrm{kNm}$

STEEL BEAM TORSION DESIGN (EN1993)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Partial factors - Section 6.1

Resistance of cross-sections $\quad \gamma_{\text {M }}=1$
Resistance of members to instability $\quad \gamma_{\mathrm{M} 1}=1$

Section details

Section type UB 254x146x43 (BS4-1)
Steel grade - EN 10025-2:2004
Nominal thickness of element
Nominal yield strength
Nominal ultimate tensile strength
S275
$\mathrm{t}_{\mathrm{nom}}=\max \left(\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}\right)=12.7 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$

Modulus of elasticity
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$

Shear centre

Distance between flange shear centres
Shear centre (above bottom flange centroid)
$E=210000 \mathrm{~N} / \mathrm{mm}^{2}$

Analysis results

Design bending moment - major axis
$\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}=\mathbf{5 7 . 3} \mathrm{kNm}$
Design shear force - major axis
$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}}=45.8 \mathrm{kN}$

Classification

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)
Width of section

$$
\begin{aligned}
& \mathrm{c}=\mathrm{d}=219 \mathrm{~mm} \\
& \mathrm{c} / \mathrm{t}_{\mathrm{w}}=30.4=32.9 \times \varepsilon<=72 \times \varepsilon \quad \text { Class } 1
\end{aligned}
$$

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section

$$
\begin{aligned}
& c=\left(b-t_{w}-2 \times r\right) / 2=62.5 \mathrm{~mm} \\
& c / t_{f}=4.9=5.3 \times \varepsilon<=9 \times \varepsilon \quad \text { Class } 1
\end{aligned}
$$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF 07922 148701	Project BEAM 4-\& Plate - rear extension cavity wall over doors				Job no.739	
	Calcs for Connor McKitrich				Start page no./Revision 5	
	Calcs by	$\begin{aligned} & \text { Calcs date } \\ & 31 / 05 / 2023 \end{aligned}$	Checked by DB	Checked date 31/05/2023	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 31 / 05 / 2023 \\ \hline \end{array}$

Torsional loads

Load No.	Load type	Load (kNm)	Distance along beam (mm)
1	UDL	1.4	-

Rotation ϕ (SCI P385 Appendix C Case 4)

$\phi=T_{d} \times a^{2} /\left(G_{\text {SEC } 3} \times I_{t} \times L\right) \times\left(\left(x \times L-x^{2}\right) /\left(2 \times a^{2}\right)+\cosh (x / a)-\tanh (L /(2 \times a)) \times \sinh (x / a)-1\right)$
Additional minor moment due to rotation, $\mathrm{M}_{\mathrm{z}, \mathrm{add}, \mathrm{Ed}}=\mathrm{M}_{\mathrm{y}, \mathrm{Ed}} \times \phi$

Additional minor design moment due to rotation
$\mathrm{M}_{\mathrm{z}, \mathrm{add}, \mathrm{Ed}}=1.88 \mathrm{kNm}$

St Venant ϕ^{\prime} (SCI P385 Appendix C Case 4)

$\phi^{\prime}=T_{d} \times a /\left(G_{S E C 3} \times I_{t} \times L\right) \times(L /(2 \times a)-x / a+\sinh (x / a)-\tanh (L /(2 \times a)) \times \cosh (x / a))$
Design value of the internal St Venant torsion moment $T_{t, E d}=G_{S E C 3} \times I_{t} \times \phi^{\prime}$

St Venant torsion design moment

$$
\mathrm{T}_{\mathrm{t}, \mathrm{Ed}}=0.42 \mathrm{kNm}
$$

Warping $\phi^{\prime \prime}$ (SCI P385 Appendix C Case 4)

$\phi^{\prime \prime}=\mathrm{T}_{\mathrm{d}} /\left(\mathrm{G}_{\text {SEC } 3} \times \mathrm{I}_{\mathrm{t}} \times \mathrm{L}\right) \times(-1+\cosh (\mathrm{x} / \mathrm{a})-\tanh (\mathrm{L} /(2 \times \mathrm{a})) \times \sinh (\mathrm{x} / \mathrm{a}))$
Warping design moment, $M_{w, E d}=E_{\text {SEC } 3} \times I_{w} \times \phi^{\prime \prime} / h_{s}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project BEAM 4-\& Plate - rear extension cavity wall over doors				Job no.739	
	Calcs for			Connor McKitrich	Start page no./Revision 6	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 31 / 05 / 2023 \end{aligned}$	Checked by DB	Checked date 31/05/2023	Approved by SB	Approved date 31/05/2023

Warping design moment
$\mathrm{M}_{\mathrm{w}, \mathrm{Ed}}=1.06 \mathrm{kNm}$
Warping torsional $\phi^{\prime \prime \prime}$ (SCI P385 Appendix C Case 4)
$\phi "=T_{d} /\left(G_{s E C 3} \times I_{t} \times L \times a\right) \times(\sinh (x / a)-\tanh [L /(2 \times a)] \times \cosh (x / a))$
Warping torsional design moment, $\mathrm{T}_{\mathrm{w}, \mathrm{Ed}}=\mathrm{E}_{\text {SEC } 3} \times \mathrm{I}_{\mathrm{w}} \times \phi^{\prime \prime \prime}$

Warping torsional design moment
$\mathrm{T}_{\mathrm{w}, \mathrm{Ed}}=\mathbf{0 . 3 0} \mathrm{kNm}$

Check shear - Section 6.2.6

Height of web
$h_{w}=h-2 \times t_{f}=234.2 \mathrm{~mm}$
$\eta=1.000$
$h_{w} / t_{w}=32.5=35.2 \times \varepsilon / \eta<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
Design shear force
$V_{y, E d}=45.81 \mathrm{kN}$
Shear area - cl 6.2.6(3)
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=2020 \mathrm{~mm}^{2}$
Design shear resistance - cl 6.2.6(2)
Shear stress due to St Venant torsion
$V_{\text {pl, }, \mathrm{Rd}}=A_{v} \times\left(\mathrm{f}_{\mathrm{y}} / \sqrt{ }(3)\right) / \gamma_{\mathrm{mo}}=320.8 \mathrm{kN}$
$\tau_{\mathrm{t}, \mathrm{Ed}}=\mathrm{T}_{\mathrm{t}, \mathrm{Ed}} \times \mathrm{t}_{\mathrm{w}} / \mathrm{I}_{\mathrm{t}}=\mathbf{1 2 . 5 7} \mathrm{N} / \mathrm{mm}^{2}$
Reduced shear resistance due to torsion - eq 6.26
$V_{c, y, R d}=V_{p l, T, y, R d}=\sqrt{ }\left(1-\tau_{t, E d} /\left(1.25 \times\left(f_{y} / \sqrt{ }(3)\right) / \gamma_{m}\right)\right) \times V_{p l, y, R d}=310.4 \mathrm{kN}$ $V_{y, E d} / V_{p l, T, y, R d}=0.148$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment
$M_{y, E d}=57.3 \mathrm{kNm}$
Design bending resistance moment - eq 6.13
$M_{c, y, R d}=M_{p l, y, R d}=W_{p l . y} \times f_{y} / \gamma_{M 0}=155.7 \mathrm{kNm}$
$M_{y, E d} / M_{\text {pl, }, \text {,Rd }}=0.368$
PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Loading factor C_{1}
$C_{1}=1.127$
Loading factor C_{2}
Loading factor C_{3}
Poissons ratio
Shear modulus
Unrestrained effective length
Distance from shear centre to level of load
Elastic critical buckling moment

Slenderness ratio for lateral torsional buckling
Limiting slenderness ratio
$\mathrm{C}_{2}=0.454$
$\mathrm{C}_{3}=0.52$
$v=0.3$
$\mathrm{L}=5000 \mathrm{~mm}$
$\bar{\lambda}_{\text {LT, }}=\mathbf{0 . 4}$
$\mathrm{G}=\mathrm{E} /[2 \times(1+\mathrm{v})]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{z}_{\mathrm{g}}=\left(\mathrm{h}_{\mathrm{tb}} / 2 \times \mathrm{w}_{\mathrm{tb}}-\mathrm{h}_{\mathrm{tb}} / 2 \times \mathrm{w}_{\mathrm{sb}}\right) /\left(\mathrm{w}_{\mathrm{tb}}+\mathrm{w}_{\mathrm{sb}}\right)=105.3 \mathrm{~mm}$
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} /\left(k_{z, c r} \times L^{2}\right) \times\left(\sqrt{ }\left(\left(k_{z, c r} / k_{w, c r}\right)^{2} \times I_{w} / I_{z}+L^{2} \times G \times I_{t} /\right.\right.$
$\left.\left.\left(\pi^{2} \times E \times I_{z}\right)+\left(C_{2} \times Z_{g}\right)^{2}\right)-\left(C_{2} \times Z_{g}\right)\right)=113.9 \mathrm{kNm}$
$\bar{\lambda}_{\text {LT }}=\sqrt{ }\left(W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{M}_{\text {cr }}\right)=1.169$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 4-\& Plate - rear extension cavity wall over doors				Job no.739	
	Calcs for Connor McKitrich				Start page no./Revision 7	
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 31 / 05 / 2023 \end{array}$	Checked by DB	Checked date $31 / 05 / 2023$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 31 / 05 / 2023 \end{array}$

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5
Imperfection factor - Table 6.3
b

Correction factor for rolled sections
$\alpha_{L T}=0.34$

LTB reduction determination factor
$\beta=0.75$
$\Phi_{L T}=0.5 \times\left(1+\alpha_{L T} \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right)=1.144$
LTB reduction factor - eq 6.57
$\chi_{L T}=\min \left(1 /\left(\Phi_{L T}+\sqrt{ }\left(\Phi_{L T}{ }^{2}-\beta \times \bar{\lambda}_{L T}{ }^{2}\right)\right), 1,1 / \bar{\lambda}_{L T^{2}}\right)=\mathbf{0 . 5 9 7}$
$\mathrm{f}=\min \left(1-0.5 \times\left(1-k_{c}\right) \times\left[1-2 \times\left(\bar{\lambda}_{L T}-0.8\right)^{2}\right], 1\right)=0.979$
$\chi L T, \bmod =\min \left(\chi_{L T} / f, 1,1 / \bar{\lambda}_{L T}{ }^{2}\right)=\mathbf{0 . 6 1 0}$
$M_{b, R d}=\chi L T, \bmod \times W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=95 \mathrm{kNm}$
$M_{y, E d} / M_{b, y, R d}=0.603$
PASS - Design buckling resistance exceeds design buckling moment

Check bending moment-Section 6.2.5

Design bending moment
Design bending resistance moment - eq 6.13
$M_{z, \text { Ed,total }}=M_{z, E d}+M_{z, \text { add }, E d}=1.9 \mathrm{kNm}$
$M_{c, z, R d}=M_{p l, z, R d}=W_{\text {pl.z }} \times f_{y} / \gamma_{\mathrm{mo}}=38.8 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{z}, \mathrm{Ed}, \text { total }} / \mathrm{M}_{\mathrm{pl}, \mathrm{z}, \mathrm{Rd}}=\mathbf{0 . 0 4 8}$
PASS - Design bending resistance moment exceeds design bending moment

Check warping moment

Warping moment in flange
Plastic modulus of flange
Design warping resistance of flange
$M_{w, E d}=1.06 \mathrm{kNm}$
$W_{\text {pl.f }}=t_{f} \times b^{2} / 4=68.89 \mathrm{~cm}^{3}$
$M_{w, R d}=W_{\text {pl.f }} \times f_{y} / \gamma_{\text {M }}=18.94 \mathrm{kNm}$
$M_{w, E d} / M_{w, R d}=0.056$
PASS - Bending resistance in one flange exceeds the design warping moment

Combined bending and torsion (EN1993-6 Annex A)

Equiv. uniform moment factor (parabolic curve)
Characteristic moment resistance - y axis
Characteristic moment resistance - z axis
Characteristic warping resistance
Interaction factors

Interaction formula eqn A. 1

Plastic verification - Exp.6.41

Serviceability limit checks

Rotation limit
Rotation of torsion beam

Vertical deflection limit
SLS loading on beam
Vertical deflection of torsion beam
$C_{m z}=0.95$
$M_{y, R k}=W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}}=155.7 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{z}, \mathrm{Rk}}=\mathrm{W}_{\mathrm{pl.z}} \times \mathrm{f}_{\mathrm{y}}=\mathbf{3 8 . 8} \mathrm{kNm}$
$\mathrm{M}_{\mathrm{w}, \mathrm{Rk}}=\mathrm{W}_{\mathrm{pl.f}} \times \mathrm{f}_{\mathrm{y}}=\mathbf{1 8 . 9 \mathrm { kNm }}$
$\mathrm{k}_{\mathrm{w}}=0.7-0.2 \times \mathrm{M}_{\mathrm{w}, \mathrm{Ed}} /\left(\mathrm{M}_{\mathrm{w}, \mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=\mathbf{0 . 6 9}$
$\mathrm{k}_{\mathrm{zw}}=1-\mathrm{M}_{\mathrm{z}, \mathrm{Ed}, \text { total }} /\left(M_{\mathrm{z}, \mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=0.95$
$\mathrm{k}_{\alpha}=1 /\left(1-\mathrm{M}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{cr}}\right)=\mathbf{2 . 0 1}$
$M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma_{M 1}\right)+C_{m z} \times M_{z, E d, \text { total }} /\left(M_{z, R k} / \gamma_{M 1}\right)+k_{w} \times k_{z w} \times k_{\alpha} \times$
$M_{w, E d} /\left(M_{w, R k} / \gamma_{M 1}\right)=0.735$
PASS - Combined bending and torsion check satisfied
$\left(M_{y, E d} / M_{p l, y, R d}\right)^{2}+M_{z, E d, t o t a l} / M_{p l, z, R d}+M_{w, E d} / M_{w, R d}=0.239$
PASS - Plastic interaction criterion is less than 1.0
$\phi_{\text {ser, }, \text { im }}=2.00 \mathrm{deg}$
$\phi_{\text {ser }}=M_{z, a d d, E d} \times 180 /\left(M_{y, E d} \times \gamma_{G} \times \pi\right)=1.39 \mathrm{deg}$
PASS - Rotation limit exceeds rotation in torsion beam
$\delta_{\mathrm{v}, \text { lim }}=\mathbf{1 0 . 0} \mathrm{mm}$
$f_{d, \text { ser }}=w_{\text {sb,ser }}+w_{\text {tb,ser }}+w_{\text {sw,sb,ser }}+w_{\text {sw,tb,ser }}=13.02 \mathrm{kN} / \mathrm{m}$
$\delta_{\mathrm{v}}=5 \times \mathrm{f}_{\mathrm{d}, \text { ser }} \times \mathrm{L}^{4} /\left(384 \times \mathrm{E}_{\text {sb }} \times \mathrm{I}_{\mathrm{ytb}}\right)=7.7 \mathrm{~mm}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 4 - \& Plate - rear extension cavity wall over doors				$\begin{aligned} & \text { Job no. } \\ & \\ & \end{aligned}$	
	Calcs for Connor McKitrich				Start page no./Revision 8	
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 31 / 05 / 2023 \end{array}$	Checked by DB	Checked date $31 / 05 / 2023$	Approved by SB	$\begin{array}{\|c} \text { Approved date } \\ 31 / 05 / 2023 \end{array}$

