Tekla Tedds PlanningApplications.com	Project High Gables, Straight Road, Boxted, Colchester, CO4 5QN				Job no. 2021-67-01	
Summer House, Upper Court Rd CR3 7BF - 020 8660 5026	Calcs for	Mr Ralp	h Keeble		Start page no./F	Revision 1
support@planningapplications.com	Calcs by SB	Calcs date 29/04/2021	Checked by DB	Checked date 29/04/2021	Approved by SB	Approved date 29/04/2021

MASONRY WALL PANEL DESIGN

In accordance with EN1996-1-1:2005 + A1:2012 incorporating Corrigenda February 2006 and July 2009 and the UK national annex

Tedds calculation version 1.2.18

Summary table

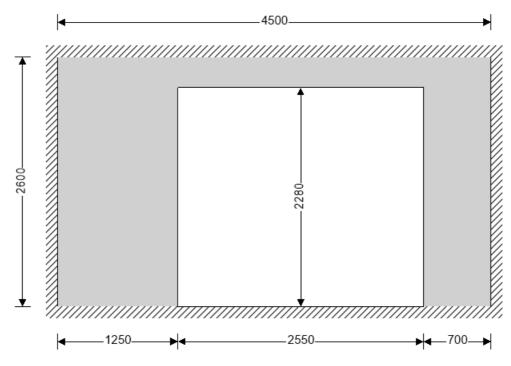
	Allowable	Actual	Utilisation	
Slenderness ratio	27;	20.4;	0.757;	PASS
Height to thickness ratio	59.281;	20.430;	0.345;	PASS
Flexural stress to outer leaf of sub panel 1	0.634 kNm/m;	0.189 kNm/m;	0.298;	PASS
Flexural stress to inner leaf of sub panel 1	0.622 kNm/m;	0.185 kNm/m;	0.298;	PASS
Flexural stress to outer leaf of sub panel 2	0.634 kNm/m;	0.183 kNm/m;	0.289;	PASS
Flexural stress to inner leaf of sub panel 2	0.622 kNm/m;	0.181 kNm/m;	0.291;	PASS
Flexural stress to outer leaf of sub panel 3	0.679 kNm/m;	0.522 kNm/m;	0.769;	PASS
Flexural stress to inner leaf of sub panel 3	0.652 kNm/m;	0.502 kNm/m;	0.769;	PASS

Masonry panel details

Side wall - Bi-folds opening - Unreinforced masonry wall with openings

Panel length	L = 4500 mm
Panel height	h = 2600 mm

Panel support conditions

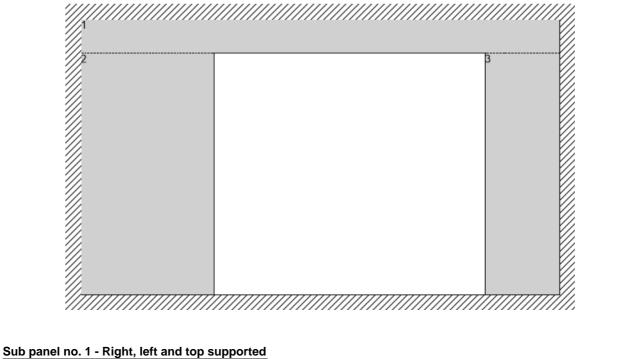

Outer leaf	All edges supported continuously
Inner leaf	All edges supported continuously

Effective height of masonry walls - Section 5.5.1.2

Reduction factor

Effective height of wall - eq 5.2

ρ2 = **1.000** h_{ef} = ρ2 × h = **2600** mm



PlanningApplications.com	High Gable	es, Straight Road,	Boxted, Colch	ester, CO4 5QN	202	1-67-01	
Summer House, Upper Court Rd	Calcs for				Start page no./F		
CR3 7BF - 020 8660 5026		Mr Ralph Keeble				2	
support@planningapplications.com	Calcs by SB	Calcs date 29/04/2021	Checked by DB	Checked date 29/04/2021	Approved by SB	Approved 29/04/2	
	30	29/04/2021		29/04/2021	38	29/04/2	
Panel opening details							
Spacing length		L1 = 1250	mm				
Opening width		W1 = 2550	mm				
Height to underside of lintel		h1 = 2280	mm				
Height of opening		O1 = 2280	mm				
Cavity wall construction detail	ils						
Outer leaf thickness		tı = 102 m					
Cavity thickness		tc = 50 mm					
Inner leaf thickness		t2 = 100 m	m				
Effective thickness of mason	ry walls - Sec	tion 5.5.1.3					
Relative E factor		ktef = 1.000)				
Effective thickness - eq 5.11		$t_{ef} = (k_{tef} \times$	$t_{1^3} + t_{2^3})^{1/3} = 12$	27.3 mm			
1					1		
		X	/				
		X		~			
				-			
		Aggregate	e concrete bri				
Masonry outer leaf details	ігу	Aggregate		≂ ck - Group 1			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit	гу	fc1 = 3.6 N/ hu1 = 215 r	/mm² mm	-≺ ck - Group 1			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit	ıry	fc1 = 3.6 N/ hu1 = 215 r Wu1 = 102	/mm² mm	 ck - Group 1			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor		$f_{c1} = 3.6 \text{ N}_{t}$ $h_{u1} = 215 \text{ m}$ $w_{u1} = 102 \text{ k}$ $k_1 = 1.0$	/mm² mm mm	 ck - Group 1			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor		$f_{c1} = 3.6 \text{ N}_{t}$ $h_{u1} = 215 \text{ m}$ $w_{u1} = 102 \text{ k}$ $k_1 = 1.0$	/mm² mm mm .2				
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1	ndition in acco	$f_{c1} = 3.6 \text{ N/}$ $h_{u1} = 215 \text{ m}$ $w_{u1} = 102 \text{ m}$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37$	/mm ² mm mm .2 6				
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren	ndition in acco	$f_{c1} = 3.6 \text{ N}_{t}$ $h_{u1} = 215 \text{ m}$ $W_{u1} = 102$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37$ $y \qquad f_{b1} = f_{c1} \times k$	/mm ² mm 2 6 (1 × dsf1 = 4.95 4				
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry	ndition in acco	$f_{c1} = 3.6 \text{ N}_{c1}$ $h_{u1} = 215 \text{ m}_{u1}$ $w_{u1} = 102$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37$ $y \qquad f_{b1} = f_{c1} \times k$ $\gamma_1 = 20 \text{ kN}_{c1}$	/mm ² mm .2 6 (1 × dsf1 = 4.95 4 /m ³	4 N/mm²			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry Mortar type	ndition in acco gth of masonr	$f_{c1} = 3.6 \text{ N}_{c1}$ $h_{u1} = 215 \text{ m}_{u1}$ $w_{u1} = 102$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37$ $y \qquad f_{b1} = f_{c1} \times k$ $\gamma_1 = 20 \text{ kN}_{c1}$	/mm ² mm .2 6 ≲1 × d₅f1 = 4.95 4 /m ³ eral purpose n	4 N/mm²			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry Mortar type Compressive strength of masor	ndition in acco gth of masonr nry mortar	$f_{c1} = 3.6 \text{ N/}$ $h_{u1} = 215 \text{ m}$ $w_{u1} = 102$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.370$ $y \qquad f_{b1} = f_{c1} \times k$ $\gamma_1 = 20 \text{ kN/}$ $M6 - Gene$	/mm ² mm .2 6 ≲1 × d₅f1 = 4.95 4 /m ³ eral purpose n	4 N/mm²			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry Mortar type Compressive strength of masor Compressive strength factor - T	ndition in acco gth of masonr nry mortar able NA.4	$f_{c1} = 3.6 \text{ N/}$ $h_{u1} = 215 \text{ m}$ $w_{u1} = 102 \text{ m}$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37 \text{ m}$ $y \qquad f_{b1} = f_{c1} \times k$ $\gamma_1 = 20 \text{ kN/}$ $M6 - Gene$ $f_{m1} = 6 \text{ N/m}$ $K = 0.75$	/mm ² mm .2 6 ≲1 × d₅f1 = 4.95 4 /m ³ eral purpose n	4 N/mm²			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry	ndition in acco gth of masonr nry mortar able NA.4	fc1 = 3.6 N/ hu1 = 215 r Wu1 = 102 k1 = 1.0 rdance with cl.7.3 dsf1 = 1.370 y fb1 = fc1 × k γ_1 = 20 kN/ M6 - Gene fm1 = 6 N/n K = 0.75 nry - eq 3.1	/mm ² mm .2 6 ≲1 × dsf1 = 4.95 4 /m ³ eral purpose n nm ²	4 N/mm² nortar	3.715 N/mm ²		
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry Mortar type Compressive strength of masor Compressive strength factor - T Characteristic compressive stre	ndition in acco gth of masonr nry mortar rable NA.4 ngth of masor	$f_{c1} = 3.6 \text{ N/}$ $h_{u1} = 215 \text{ m}$ $W_{u1} = 102$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37$ $y \qquad f_{b1} = f_{c1} \times k$ $\gamma_1 = 20 \text{ kN/}$ $M6 - Gene$ $f_{m1} = 6 \text{ N/m}$ $K = 0.75$ $rry - eq 3.1$ $f_{k1} = K \times f_b$	/mm ² mm .2 6 (1 × dsf1 = 4.954 /m ³ eral purpose n nm ² 1 ^{0.7} × min(fm1, 4	4 N/mm² nortar ↓.954 N/mm²) ^{0.3} = 5			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry Mortar type Compressive strength of masor Compressive strength factor - T	ndition in acco gth of masonr nry mortar rable NA.4 ngth of masor	$f_{c1} = 3.6 \text{ N/}$ $h_{u1} = 215 \text{ m}$ $w_{u1} = 102 \text{ m}$ $k_1 = 1.0$ $rdance \text{ with cl.7.3}$ $d_{sf1} = 1.37 \text{ m}$ $y f_{b1} = f_{c1} \times k$ $\gamma_1 = 20 \text{ kN/}$ $M6 - Genere$ $f_{m1} = 6 \text{ N/m}$ $K = 0.75$ $ry - eq 3.1$ $f_{k1} = K \times f_b$ ving a plane of fail	/mm ² mm mm .2 6 $(1 \times d_{sf1} = 4.954)$ /m ³ eral purpose n nm ² $1^{0.7} \times min(f_{m1}, 4)$ ilure parallel to	4 N/mm² nortar ↓.954 N/mm²) ^{0.3} = 5			
Masonry outer leaf details Masonry type Compressive strength of masor Height of unit Width of unit Conditioning factor - Conditioning to the air dry cor Shape factor - Table A.1 Norm. mean compressive stren Density of masonry Mortar type Compressive strength of masor Compressive strength factor - T Characteristic compressive stre	ndition in acco gth of masonr ary mortar able NA.4 ngth of masor	fc1 = 3.6 N/ hu1 = 215 r Wu1 = 102 k1 = 1.0 rdance with cl.7.3 dsf1 = 1.370 y fb1 = fc1 × k γ_1 = 20 kN/ M6 - Gene fm1 = 6 N/n K = 0.75 my - eq 3.1 fk1 = K × fb wing a plane of fai fxk11 = 0.3	/mm ² mm mm .2 6 (1 × dst1 = 4.95 4 /m ³ eral purpose n nm ² 1 ^{0.7} × min(fm1, 4 ilure parallel to N/mm ²	4 N/mm² nortar 4.954 N/mm²) ^{0.3} = 5 9 the bed joints - Ta	able NA.6	1.6	

PlanningApplications.com	Project High Gables	s, Straight Road,	Boxted, Colch	ester, CO4 5QN	Job no. 202	1-67-01
Summer House, Upper Court Rd CR3 7BF - 020 8660 5026	Calcs for Mr Ralph Keeble			Start page no./Revision 3		
support@planningapplications.com	Calcs by SB	Calcs date 29/04/2021	Checked by DB	Checked date 29/04/2021	Approved by SB	Approved dat 29/04/202
Maganny inner loof dataila			·			·
Masonry inner leaf details Masonry type		Aggregate	concrete bri	ck - Group 1		
Compressive strength of maso	nrv	fc2 = 3.6 N/				
Height of unit	,	hu2 = 215 n				
Width of unit		Wu2 = 100 r				
Conditioning factor		k ₂ = 1.0				
- Conditioning to the air dry co	ndition in accord	dance with cl.7.3.	2			
Shape factor - Table A.1		dsf2 = 1.38				
Norm. mean compressive stren	ngth of masonry	$f_{b2} = f_{c2} \times k_{c2}$	2 × dsf2 = 4.968	N/mm ²		
Density of masonry	<u>,</u>	γ2 = 20 kN/	m ³			
Mortar type			ral purpose n	ortar		
Compressive strength of maso	nrv mortar	fm2 = 6 N/m		lontal		
Compressive strength factor -	-	K = 0.75				
Characteristic compressive stre						
	ongar of macori		$0.7 \times \min(f_{max})$.968 N/mm²) ^{0.3} = 3	3 726 N/mm ²	
Characteristic flexural strength	of masonry bay		•	,		
	of masoning hav	fxk12 = 0.3	-		able NA.0	
Characteristic flexural strength	of masonry bay			ular to the bed iou	ote - Table NA	6
	of masonly nav	fxk22 = 0.9				
		1xk22 = 0.91	N/111111-			
Lateral loading details						
Characteristic wind load on par	nel	Wk = 0.600) kN/m²			
Vertical loading details						
Permanent load on top of oute	r leaf	Gk1 = 24 ki	N/m			
Permanent load on top of inner	r leaf	Gk2 = 29 kl	N/m			
Variable load on top of outer le	af	$Q_{k1} = 2 kN_{0}$	′m			
Variable load on top of inner le	af	$Q_{k2} = 2 kN_{\ell}$	′m			
Partial factors for material st	rength					
Category of manufacturing con	-	Category				
Class of execution control		Class 1				
Partial factor for masonry in co	mpressive flexu	re γ _{Mc} = 2.30				
Partial factor for masonry in ter	-	γ _{Mt} = 2.30				
Partial factor for masonry in sh		γ _{Mv} = 2.50				
-						
Slenderness ratio of masonr	y walls - Sectio					
Allowable slenderness ratio		SRall = 27	00 (
Slenderness ratio		SR = h _{ef} / t				
		P	455 - Siender	ness ratio is less	s than maxim	ium allowar
Unreinforced masonry walls	subjected to la	teral loading - S	ection 6.3			
Partial safety factors for des	ign loads					
2	ent load	γfG = 1				
Partial safety factor for perman		$\gamma f Q = 0$				
-	e imposed load					
Partial safety factor for perman	-	γfw = 1.5				
Partial safety factor for perman Partial safety factor for variable Partial safety factor for variable	e wind load		or the service	ability limit state	Annov E	
Partial safety factor for perman Partial safety factor for variable Partial safety factor for variable Limiting height and length to	e wind load	os for walls und		eability limit state	e - Annex F	
Partial safety factor for perman Partial safety factor for variable Partial safety factor for variable	e wind load o thickness ration			eability limit state	e - Annex F	

Tekla Tedds PlanningApplications.com	High Gable	es, Straight Road,	Boxted, Colch	ester, CO4 5QN	202	1-67-01
Summer House, Upper Court Rd	Calcs for	Mr Dolr	h Kaabla		Start page no./I	-
CR3 7BF - 020 8660 5026		Mr Ralph Keeble			4	
support@planningapplications.com	Calcs by SB	Calcs date 29/04/2021	Checked by DB	Checked date 29/04/2021	Approved by SB	Approved c 29/04/2
		F	PASS - Limitin	ig height to thick	ness ratio is	not exceed
Design moments of resistance	e in panels					
Considering outer leaf						
Self weight at top of wall		S _{wt1} = 0 kN	/m			
Design compressive strength o	t masonry	fd1 = fk1 / γΝ	c = 1.615 N/m	m²		
Design vertical compressive str	ess	$\sigma_{d1} = \min(\gamma$	$fG \times (G_{k1} + S_{wt1})$) / t_1 , 0.15 × f_{d1}) =	0.235 N/mm ²	
Design flexural strength of mas	onry parallel to	bed joints				
		$f_{xd11} = f_{xk11}$	/ γ _{Mt} = 0.13 N/r	nm²		
Apparent design flexural streng	th of masonry	parallel to bed joir	nts			
		$f_{xd11,app} = f_{xd}$	a11 + od1 = 0.36	56 N/mm ²		
Design flexural strength of mas	onry perpendic	cular to bed joints				
		$f_{xd21} = f_{xk21}$	/ γ _{Mt} = 0.391 N	/mm²		
Elastic section modulus of wall		$Z_1 = t_{1^2} / 6$	= 1734000 mr	n³/m		
Moment of resistance parallel to	o bed joints - e	q.6.15				
		$M_{Rd11} = f_{xd1}$	1,app × Z1 = 0.6	34 kNm/m		
Moment of resistance perpendi	cular to bed joi	nts - eq.6.15				
		$M_{Rd21} = f_{xd2}$	1 × Z1 = 0.679	kNm/m		
Considering inner leaf						
Self weight at top of wall		S _{wt2} = 0 kN	/m			
Design compressive strength o	f masonry	fd2 = fk2 / γN	c = 1.620 N/m	m²		
Design vertical compressive str	ess	$\sigma_{d2} = \min(\gamma)$	fG × (Gk2 + Swt2	2) / t2, 0.15 × fd2) =	0.243 N/mm ²	
Design flexural strength of mas			·			
		$f_{xd12} = f_{xk12}$	/ γ _{Mt} = 0.13 N/r	nm²		
Apparent design flexural streng	th of masonry		-			
	_		112 + Od2 = 0.37	73 N/mm ²		
Design flexural strength of mas	onry perpendic	cular to bed joints				
		$f_{xd22} = f_{xk22}$	/ γ _{Mt} = 0.391 N	/mm²		
Elastic section modulus of wall		$Z_2 = t_2^2 / 6$	= 1666667 mr	n³/m		
Moment of resistance parallel to	o bed joints - e	q.6.15				
		$M_{Rd12} = f_{xd1}$	2,app × Z2 = 0.6	22 kNm/m		
Moment of resistance perpendi	cular to bed joi	nts - eq.6.15				
		$M_{Rd22} = f_{xd2}$	2 × Z2 = 0.652	kNm/m		
Design moment in panels						
Calculate design wind load a	cting on each	leaf				
Outer leaf design wind load - pa	•		11 × Wk / (MRd1	1 + MRd12) = 0.303	kN/m²	
				1 + MRd12) = 0.297		
Inner leaf design wind load - pa				, 1 + MRd22) = 0.306		
	rponuloului		· ·	,		
Outer leaf design wind load - pe	-	$W_{k22} = M_{Rd}$	22 × Wk / (MRd2	21 + MRd22) = 0.294	kN/m²	
Outer leaf design wind load - pe Inner leaf design wind load - pe	-	$W_{k22} = M_{Rd}$	22 × Wk / (MRd2	21 + MRd22) = 0.294	• kN/m²	
Outer leaf design wind load - pe	-		22 × Wk / (MRd2 0 / fxd21 = 0.93	e1 + MRd22) = 0.294	• kN/m²	

Tekla Tedds PlanningApplications.com	Project High Gables	, Straight Road,	Boxted, Colche	ester, CO4 5QN	Job no. 2021	-67-01
Summer House, Upper Court Rd CR3 7BF - 020 8660 5026	Calcs for Mr Ralph Keeble				Start page no./Revision 5	
support@planningapplications.com	Calcs by SB	Calcs date 29/04/2021	Checked by DB	Checked date 29/04/2021	Approved by SB	Approved date 29/04/2021

Ratio panel height to length	hs1B / Ls1B = 0.07
Considering outer leaf	
Parallel design moment of resistance	MRd11 = 0.634 kNm/m
Using elastic analysis to determine bending mo	ment coefficients for a vertically spanning sub panel
Bending moment coefficient	$\alpha_{s11B} = 0.5 \times (1 + 2 \times \beta_{s1B}) = 4.062$
Design moment in sub-panel	$M_{\text{Ed11B}} = \gamma_{\text{FW}} \times \alpha_{\text{S11B}} \times W_{\text{K11}} \times h_{\text{S1B}}^2 = \textbf{0.189} \text{ kNm/m}$
	PASS - Resistance moment exceeds design moment

WARNING! - The checking of sub-panels for vertical loading is currently beyond the scope of the calculation. This check can be performed by creating a new calculation for this sub-panel, modelled with the appropriate vertical and horizontal loading.

and horizontal loading.	
Considering inner leaf	
Parallel design moment of resistance	MRd12 = 0.622 kNm/m
Using elastic analysis to determine bendir	ng moment coefficients for a vertically spanning sub panel
Bending moment coefficient	$\alpha_{s21B} = 0.5 \times (1 + 2 \times \beta_{s1B}) = 4.062$
Design moment in sub-panel	$M_{\text{Ed21B}} = \gamma_{\text{fW}} \times \alpha_{\text{s21B}} \times W_{\text{k12}} \times h_{\text{s1B}^2} = \textbf{0.185 kNm/m}$
	PASS - Resistance moment exceeds design moment
WARNING! - The checking of sub-panels f	for vertical loading is currently beyond the scope of the calculation. This
	v calculation for this sub-panel, modelled with the appropriate vertical
and horizontal loading.	
Sub panel no. 2 - Top, bottom and left sup	ported
Ratio panel height to length	hs2B / Ls2B = 1.82
Considering outer leaf	
Parallel design moment of resistance	M _{Rd11} = 0.634 kNm/m
Using yield line analysis to calculate bend	ling moment coefficient
Bending moment coefficient	αs12B = 0.276
Design moment in sub-panel	$M_{\text{Ed12B}} = \mu_1 \times \gamma_{\text{FW}} \times \alpha_{\text{s12B}} \times W_{\text{k11}} \times L_{\text{s2B}^2} = \textbf{0.183} \text{ kNm/m}$

Tekla Tedds	Project High Gable	es, Straight Road,	Boxted Colch	ester, CO4 50N	Job no.	1-67-01	
PlanningApplications.com	Calcs for				Start page no./l		
Summer House, Upper Court Rd CR3 7BF - 020 8660 5026		Mr Ralp	Mr Ralph Keeble			6	
support@planningapplications.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	SB	29/04/2021	DB	29/04/2021	SB	29/04/20	
WARNING! - The checking of check can be performed by c and horizontal loading.	•		g is currently	•	e of the calc	ulation. Thi	
Considering inner leaf Parallel design moment of resis	stance	$M_{Rd12} = 0.6$	322 kNm/m				
Using yield line analysis to c	alculate bend	ing moment coef	ficient				
Bending moment coefficient		as22B = 0.2	73				
Design moment in sub-panel		M Ed22B = μ 2		$\langle W_{k12} \times L_{s2B^2} = 0.1$			
				esistance momer		-	
WARNING! - The checking of	•			• •			
check can be performed by c and horizontal loading.	reating a new	<i>i</i> calculation for t	his sub-panel	I, modelled with t	he appropria	te vertical	
Sub panel no. 3 - Top, botton	n and right su	pported					
Ratio panel height to length		hsзв / Lsзв =	= 3.26				
Considering outer leaf							
Perpendicular design moment	of resistance	MRd21 = 0.6	579 kNm/m				
Using elastic analysis to dete	ermine bendir	ng moment coeffi	cients for a h	orizontally spann	ning sub pan	el	
Bending moment coefficient		αs13B = 0.5	\times (1 + 2 \times β s3E	B) = 2.321			
Design moment in sub-panel		$MEd13B = \gamma f$	m W imes lphas13B $ imes m W$ k2	$_{21} \times L_{s3B^2} = 0.522 \text{ k}$	Nm/m		
				esistance momer		0	
WARNING! - The checking of check can be performed by c and horizontal loading.	•		• •	•			
Considering inner leaf							
Perpendicular design moment	of resistance	MRd22 = 0.6	6 52 kNm/m				
Using elastic analysis to dete	ermine bendir	ng moment coeffi	cients for a h	orizontally spanr	ning sub pan	el	
Bending moment coefficient		αs23B = 0.5	\times (1 + 2 \times β s3E	a) = 2.321			
0		$MEd_{23B} = \gamma f$	N imes lphas23B $ imes$ Wk2	22 × Ls3B ² = 0.502 k	Nm/m		
Design moment in sub-panel		1					
Design moment in sub-panel				esistance momer		0	
Design moment in sub-panel WARNING! - The checking of check can be performed by c	•	or vertical loadin	g is currently	beyond the scop	e of the calc	ulation. Th	
Design moment in sub-panel WARNING! - The checking of	•	or vertical loadin	g is currently	beyond the scop	e of the calc	ulation. Thi	