Project	BEAM 2-203x203x43kgUC S275			Job no.	
				2023-7459	
Calcs for Mr Colin	$\text { lliams, } 59 \text { Oak }$	Road, Ho	n RH13 5LE	Start page no	evision 1
Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 12 / 10 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|c\|} \hline \text { Checked date } \\ 12 / 10 / 2023 \end{array}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 12 / 10 / 2023 \\ \hline \end{array}$

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Minimum bearing each end 150 mm

Project \quad BEAM $2-203 \times 203 \times 43 \mathrm{kgUC} \mathrm{S} 275$				Job no.2023-7459	
Calcs for Mr Colin Williams, 59 Oakhill Road, Horsham RH13 5LE				Start page no	$\begin{aligned} & \text { evision } \\ & 2 \end{aligned}$
Calcs by SB	Calcs date $12 / 10 / 2023$	Checked by DB	Checked date $12 / 10 / 2023$	Approved by SB	Approved date $12 / 10 / 2023$

Support conditions

Support A
Support B
Applied loading
Beam loads

Beam loads

Load combinations

Support A

Support B
$M_{\text {max }}=95.1 \mathrm{kNm}$
$\mathrm{M}_{\text {s1_seg1_max }}=\mathbf{5 7 . 7} \mathrm{kNm}$
$\mathrm{M}_{\text {s1_seg2_max }}=95.1 \mathrm{kNm}$
$V_{\text {max }}=109.4 \mathrm{kN}$
$V_{\text {s1_seg1_max }}=109.4 \mathrm{kN}$
$V_{\text {s1_seg2_max }}=67.3 \mathrm{kN}$
$\delta_{\text {max }}=2.6 \mathrm{~mm}$
$R_{A_{_} \max }=109.4 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{-} \text {Dead }}=55.2 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A} _ \text {Imposed }}=20.1 \mathrm{kN}$
$R_{B_{-} \max }=93.8 \mathrm{kN}$
$R_{B_{-} \text {Dead }}=47.5 \mathrm{kN}$
$R_{\text {B_Imposed }}=17.1 \mathrm{kN}$

$$
\mathrm{R}_{\mathrm{B} _ \text {Imposed }}=\mathbf{1 1 . 1} \mathrm{KN}
$$

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Dead self weight of beam $\times 1$
Dead full UDL $22.8 \mathrm{kN} / \mathrm{m}$
Imposed full UDL $6.98 \mathrm{kN} / \mathrm{m}$
Dead point load 5 kN at 1000 mm
Imposed point load 5 kN at 1000 mm
Dead point load 9 kN at 600 mm
Imposed point load 2 kN at 600 mm
Dead point load 5 kN at 2000 mm
Imposed point load 5 kN at 2000 mm

Load combination 1

Analysis results

Maximum moment
Maximum moment span 1 segment 1
Maximum moment span 1 segment 2
Maximum shear
Maximum shear span 1 segment 1
Maximum shear span 1 segment 2
Deflection segment 3
Maximum reaction at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
Maximum reaction at support B
Unfactored dead load reaction at support B
Unfactored imposed load reaction at support B

Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$

$$
\mathrm{M}_{\min }=\mathbf{0} \mathrm{kNm}
$$

$\mathrm{M}_{\mathrm{s} 1 \text { _seg1_min }}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg2_min }}=\mathbf{0} \mathrm{kNm}$
$V_{\text {min }}=-93.8 \mathrm{kN}$
$\mathrm{V}_{\text {s1_seg1_min }}=0 \mathrm{kN}$
$V_{\text {s1_seg2_min }}=-93.8 \mathrm{kN}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A}_{\mathrm{L}} \min }=109.4 \mathrm{kN}$
$R_{B_{-} \min }=93.8 \mathrm{kN}$

\checkmark Tekla Tedds PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF support@planningapplications.com 07922148701	Project BEAM 2-203x203x43kgUC S275				Job no.2023-7459	
	Calcs for Mr Colin Williams, 59 Oakhill Road, Horsham RH13 5LE				Start page no./Revision 3	
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 12 / 10 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|c\|} \hline \text { Checked date } \\ 12 / 10 / 2023 \end{array}$	Approved by SB	Approved date $12 / 10 / 2023$

Section details

Section type
Steel grade
From table 9: Design strength p_{y}
Thickness of element
Design strength
Modulus of elasticity

UC 203x203x46 (BS4-1)
S275
$\max (\mathrm{T}, \mathrm{t})=11.0 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral restraint

Span 1 has lateral restraint at supports plus 600 mm

Effective length factors
Effective length factor in major axis
$\mathrm{K}_{\mathrm{x}}=1.00$
Effective length factor in minor axis
$K_{y}=1.00$
Effective length factor for lateral-torsional buckling
$K_{L T . A}=1.00$
$K_{L T . B}=\mathbf{1 . 0 0}$
Classification of cross sections - Section 3.5
$\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=1.00$
Internal compression parts - Table 11
Depth of section

Outstand flanges - Table 11
Width of section
$\mathrm{b}=\mathrm{B} / 2=101.8 \mathrm{~mm}$
b $/ \mathrm{T}=9.3 \times \varepsilon<=10 \times \varepsilon$
Class 2 compact

Shear capacity - Section 4.2.3
$\mathrm{d}=160.8 \mathrm{~mm}$
$\mathrm{d} / \mathrm{t}=22.3 \times \varepsilon<=80 \times \varepsilon \quad$ Class 1 plastic

Section is class 2 compact

Design shear force

Shear area
Design shear resistance

Design shear resistance

$\mathrm{F}_{\mathrm{v}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=109.4 \mathrm{kN}$
$\mathrm{d} / \mathrm{t}<70 \times \varepsilon$
Web does not need to be checked for shear buckling
$A_{v}=t \times D=1463 \mathrm{~mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=241.4 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Project				Job no.2023-7459	
BEAM $2-203 \times 203 x 43 \mathrm{~kg}$ - ${ }^{\text {- }}$ (275					
Calcs for Mr Co	liams, 59 Oak	Road, Ho	RH13 5LE	Start page no./Revision4	
Calcs by SB	Calcs date 12/10/2023	Checked by DB	Checked date 12/10/2023	Approved by SB	Approved date 12/10/2023

Moment capacity at span 1 segment 2 -Section 4.2.5

Design bending moment
Moment capacity low shear - cl.4.2.5.2
Effective length for lateral-torsional buckling - Section 4.3.5
Effective length for lateral torsional buckling
Slenderness ratio
Equivalent slenderness - Section 4.3.6.7
Buckling parameter
Torsional index
Slenderness factor
Ratio - cl.4.3.6.9
Equivalent slenderness - cl.4.3.6.7
Limiting slenderness - Annex B.2.2

Bending strength - Section 4.3.6.5

Robertson constant
Perry factor
Euler stress

Bending strength - Annex B.2.1
$\mathrm{u}=0.847$
$\mathrm{x}=17.713$
$\beta_{w}=1.000$
$\alpha_{\llcorner T}=7.0$
$\mathrm{M}=\max \left(\operatorname{abs}\left(\mathrm{M}_{\text {s1_seg2_max }}\right), \operatorname{abs}\left(\mathrm{M}_{\text {s1_seg2_min }}\right)\right)=95.1 \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S_{x x}, 1.2 \times p_{y} \times Z_{x x}\right)=136.8 \mathrm{kNm}$
$L_{E}=1.0 \times L_{\text {s1_seg2 }}=\mathbf{3 0 0 0} \mathbf{~ m m}$
$\lambda=L_{E} / r_{y y}=58.431$
$v=1 /\left[1+0.05 \times(\lambda / x)^{2}\right]^{0.25}=\mathbf{0 . 8 9 7}$
$\lambda_{L T}=u \times v \times \lambda \times \sqrt{ }\left[\beta_{w}\right]=44.372$
$\lambda_{\mathrm{L} 0}=0.4 \times\left(\pi^{2} \times \mathrm{E} / \mathrm{p}_{\mathrm{y}}\right)^{0.5}=34.310$
$\lambda_{L T}>\lambda_{L O}$ - Allowance should be made for lateral-torsional buckling
$\eta_{L T}=\max \left(\alpha_{L T} \times\left(\lambda_{L T}-\lambda_{L 0}\right) / 1000,0\right)=0.070$
$p_{E}=\pi^{2} \times E / \lambda_{L T}{ }^{2}=1027.6 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi L T=\left(p_{y}+(\eta L T+1) \times p_{E}\right) / 2=687.5 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{b}=p_{E} \times p_{y} /\left(\phi_{L T}+\left(\phi L T^{2}-p_{E} \times p_{y}\right)^{0.5}\right)=\mathbf{2 5 1 . 5} \mathrm{N} / \mathrm{mm}^{2}$

Equivalent uniform moment factor - Section 4.3.6.6
Moment at quarter point of segment
$\mathrm{M}_{2}=90.7 \mathrm{kNm}$
Moment at centre-line of segment
$\mathrm{M}_{3}=91.6 \mathrm{kNm}$
Moment at three quarter point of segment
$\mathrm{M}_{4}=58.1 \mathrm{kNm}$
Maximum moment in segment
$M_{\text {abs }}=95.1 \mathrm{kNm}$
Maximum moment governing buckling resistance
$\mathrm{M}_{\mathrm{LT}}=\mathrm{M}_{\mathrm{abs}}=95.1 \mathrm{kNm}$
Equivalent uniform moment factor for lateral-torsional buckling

$$
m_{L T}=\max \left(0.2+\left(0.15 \times M_{2}+0.5 \times M_{3}+0.15 \times M_{4}\right) / M_{a b s}, 0.44\right)=0.916
$$

Buckling resistance moment - Section 4.3.6.4
Buckling resistance moment
$\mathrm{M}_{\mathrm{b}}=\mathrm{p}_{\mathrm{b}} \times \mathrm{S}_{\mathrm{xx}}=125.1 \mathrm{kNm}$
$M_{\mathrm{b}} / \mathrm{m}_{\mathrm{LT}}=136.6 \mathrm{kNm}$
PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads
Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=\min \left(14 \mathrm{~mm}, \mathrm{~L}_{\mathrm{s} 1} / 360\right)=10 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=\mathbf{2 . 6 2 8} \mathrm{mm}$
PASS - Maximum deflection does not exceed deflection limit

