

Tekla Tedds	Project	Job no. 2023-7459 Start page no./Revision 3				
PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF	Calcs for Mr Colin Will					
support@planningapplications.com 07922 148 701	Calcs by SB	Calcs date 12/10/2023	Checked by DB	Checked date 12/10/2023	Approved by SB	Approved date 12/10/2023
	203.2	+	-7.2			
Latoral rostraint	↓ <u>∓</u> <u>+</u>	203.6-		→		
Lateral restraint		Span 1 has	s lateral restrai	int at supports only	y	
Effective length factors Effective length factor in major axis Effective length factor in minor axis Effective length factor for lateral-torsional buckling		K _x = 1.00 K _y = 1.00 K _{LT.A} = 1.00 K _{LT.B} = 1.00)			
Classification of cross section	ons - Section 3.5	ε = √[275 Ν	J/mm² / p _y] = 1	.00		
Internal compression parts -	Table 11					
Depth of section		d = 160.8 r d / t = 22.3	nm × ε <= 80 × ε	Class 1	plastic	
Outstand flanges - Table 11						
Width of section		b = B / 2 = b / T = 9.3	101.8 mm × ε <= 10 × ε	Class 2	compact Section is cla	ass 2 compact
Shear capacity - Section 4.2.	3					
Design shear force		F _v = max(a d / t < 70 ×	bs(V _{max}), abs(' ε	V _{min})) = 93.9 kN		
			Web does	not need to be o	checked for s	hear buckling
Shear area		$A_v = t \times D =$	= 1463 mm²			
Design shear resistance		× ۵.۵ ⊭ PAS	by × Av = 241.4 SS - Design sl	нкі hear resistance e	xceeds desig	gn shear force
Moment capacity - Section 4	.2.5		5			-
Design bending moment	-	M = max(a	bs(M _{s1_max}), ab	os(M _{s1_min})) = 72.3	kNm	
Moment capacity low shear - c	1.4.2.5.2	M₅ = min(p	$_{y} \times S_{xx}$, 1.5 × p	y × Z _{xx}) = 136.8 k№	۱m	
Effective length for lateral-to	rsional buckling	- Section 4.3.5	5			
Effective length for lateral torsi	onal buckling	L_E = 1.0 × I	_ _{s1} = 3600 mm	I.		
Slenderness ratio		$\lambda = L_E / r_{yy}$	= 70.117			

Tekla Tedds	Project	BEAM 3 - 203x2	Job no. 2023-7459							
PlanningApplications.com Summer House, Upper Court Road	Calcs for Mr Colin \	Villiams, 59 Oakh	Start page no./Revision 4							
support@planningapplications.com 07922 148 701	Calcs by SB	Calcs date 12/10/2023	Checked by DB	Checked date 12/10/2023	Approved by SB	Approved date 12/10/2023				
Equivalent slenderness - Sec	tion 4.3.6.7									
Buckling parameter	u = 0.847	u = 0.847								
Torsional index		x = 17.713								
Slenderness factor	v = 1 / [1 +	v = 1 / $[1 + 0.05 \times (\lambda / x)^2]^{0.25}$ = 0.865								
Ratio - cl.4.3.6.9		βw = 1.000	βw = 1.000							
Equivalent slenderness - cl.4.3.6.7		λ_{LT} = u \times v	$\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta_W]} = 51.361$							
Limiting slenderness - Annex B.2.2		λ_{L0} = 0.4 ×	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$							
	$\lambda_{LT} > \lambda_{L0}$ -	$\lambda_{LT} > \lambda_{L0}$ - Allowance should be made for lateral-torsional buckling								
Bending strength - Section 4	.3.6.5									
Robertson constant		α _{LT} = 7.0								
Perry factor		n⊾⊤ = max(e	$η_{LT} = max(α_{LT} \times (λ_{LT} - λ_{L0}) / 1000, 0) = 0.119$							
Euler stress	$p_{\rm E} = \pi^2 \times E$	$p_{\rm E} = \pi^2 \times E / \lambda_{\rm LT}^2 = 767 \text{ N/mm}^2$								
		$\phi_{1T} = (p_{y} +)$	'тіт + 1) × рг) /	/ 2 = 566.8 N/mm ²	!					
Bending strength - Annex B.2.1	$p_{b} = p_{E} \times p_{v}$	$p_b = p_E \times p_V / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_V)^{0.5}) = 234.6 \text{ N/mm}^2$								
Equivalent uniform moment	actor - Sectio	n 4 3 6 6		,, ,						
Moment at quarter point of seg	ment	M ₂ = 1.1 kN	lm							
Moment at centre-line of segment		M ₃ = 41 kN	M ₃ = 41 kNm							
Moment at three guarter point of segment		M ₄ = 33.8 k	M ₄ = 33.8 kNm							
Maximum moment in segment		M _{abs} = 72.3	M _{abs} = 72.3 kNm							
Maximum moment governing b	uckling resistar	nce M _{LT} = M _{abs}	= 72.3 kNm							
Equivalent uniform moment fac	tor for lateral-to	orsional buckling								
		m _{L⊺} = max(0.2 + (0.15 × N	1 ₂ + 0.5 × M ₃ + 0.1	$5 \times M_4) / M_{abs}$, 0.44) = 0.555				
Buckling resistance moment	- Section 4.3.	6.4								
Buckling resistance moment	$M_b = p_b \times S$	$M_{b} = p_{b} \times S_{xx} = 116.7 \text{ kNm}$								
-	$M_{b} / m_{LT} = 2$	M _b / m _{LT} = 210.1 kNm								
		PASS - Moment capacity exceeds design bending moment								
Check vertical deflection - Se	ction 2.5.2									
Consider deflection due to impo	osed loads									
Limiting deflection		$\delta_{\text{lim}} = \min(1$	4 mm, L _{s1} / 36	0) = 10 mm						
Maximum deflection span 1	$\delta = \max(ab)$	δ = max(abs(δ_{max}), abs(δ_{min})) = 0.909 mm								
	PAS	PASS - Maximum deflection does not exceed deflection limit								