- Tekla Tedds PlanningApplications.com Summer House, Upper Court Rd Woldingham SURREY CR3 7BF Tel:0203 2949477 Mob:07922 148701 support@planningapplications.com	Project Plan of BEAMS 1, 2, 3.				Job no.2023-7459	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 1	
	Calcs by	$\begin{aligned} & \hline \text { Calcs date } \\ & 19 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{aligned} & \hline \text { Checked date } \\ & \text { 19/09/2023 } \end{aligned}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 19 / 09 / 2023 \\ \hline \end{array}$

SUMMARY

Beam 1-254x254x73kgUB S275 to support 300mm cavity wall existing rear structure. 3800 mm total length - dimension to be checked on site.

Beam 2-203x133x25kgUB S275 + 8mm x 270mm S275 welded plate to support 300mm cavity wall \& permit facing brickwork to outer leaf to proposed single storey extension. 3800 mm total length - dimension to be checked on site.

Beam 3-3x pre-stressed $65 \times 100 \mathrm{~mm}$ concrete lintels to span over new doorway opening. 1150 mm total length - dimension to be checked on site.

Project				Job no.	
BEAM 3 - concrete lintels				2023-7459	
Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 2	
Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 19 / 09 / 2023 \end{array}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 19 / 09 / 2023 \end{array}$	Approved by SB	Approved date 19/09/2023

$4^{\prime \prime} \times 3^{\prime \prime}$ Prestressed Concrete Lintels $65 \mathrm{~mm} \times 100 \mathrm{~mm}$

Nominal Length mm
900
1050
1200
1350
1500
1650
1800
1950
2100
2250
2400

Safe Load Capacity On Edge kN / m
$R m=0.53 \mathrm{kNm}$
37.43
33.54
29.65
25.76
21.87
17.98
14.09
10.20
7.54
6.29
5.24

$R m=0.21 \mathrm{kNm}$

22.27
20.66
19.05
17.44
15.83
14.22
12.61
11.01
8.88
6.76
4.64

BEAM 3

Lintel PASS Calc
Span 900 mm , laid flat side, max load capacity 22.27
Actual load condition $=2 \mathrm{kNm}$ Therefore PASS

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	BEAM 1 (1 No. $254 \times 254 \times 73 \mathrm{kgUB}$)				2023-7459	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 1	
	Calcs by SB	$\begin{aligned} & \text { Calcs date } \\ & \quad 19 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{\|c\|} \hline \text { Checked date } \\ 19 / 09 / 2023 \end{array}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ \text { 19/09/2023 } \end{array}$

STEEL BEAM ANALYSIS \& DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF pport@planningapplications.com 07922 148701	BEAM 1 (1 No. $254 \times 254 \times 73 \mathrm{kgUB}$)				2023-7459	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 2	
	Calcs by SB	$\begin{aligned} & \text { Calcs date } \\ & \text { 19/09/2023 } \end{aligned}$	Checked by DB	$\begin{array}{\|l\|} \hline \text { Checked date } \\ \hline 19 / 09 / 2023 \end{array}$	Approved by SB	Approved date 19/09/2023

Support conditions

Support A	Vertically restrained Rotationally free Vertically restrained
Support B	Rotationally free
Applied loading	
Beam loads	Permanent self weight of beam $\times 1$ Permanent full UDL $35 \mathrm{kN} / \mathrm{m}$
	Variable full UDL $15 \mathrm{kN} / \mathrm{m}$

Load combinations

Load combination 1

Support A	Permanent $\times 1.35$
	Variable $\times 1.50$
	Permanent $\times 1.35$
Support B	Variable $\times 1.50$
	Permanent $\times 1.35$
	Variable $\times 1.50$

Analysis results

Maximum moment	$M_{\text {max }}=108.3 \mathrm{kNm}$	$\mathrm{M}_{\text {min }}=0 \mathrm{kNm}$
Maximum shear	$\mathrm{V}_{\text {max }}=123.8 \mathrm{kN}$	$V_{\text {min }}=-123.8 \mathrm{kN}$
Deflection	$\delta_{\text {max }}=1.2 \mathrm{~mm}$	$\delta_{\text {min }}=0 \mathrm{~mm}$
Maximum reaction at support A	$\mathrm{R}_{\mathrm{A}_{\text {Imax }}}=123.8 \mathrm{kN}$	$\mathrm{R}_{\mathrm{A}_{-} \text {min }}=123.8 \mathrm{kN}$
Unfactored permanent load reaction at support A	$\mathrm{R}_{\mathrm{A}_{-} \text {Permanent }}=62.5 \mathrm{kN}$	
Unfactored variable load reaction at support A	$\mathrm{R}_{\text {A_Variable }}=26.3 \mathrm{kN}$	
Maximum reaction at support B	$\mathrm{R}_{\mathrm{B}_{\text {max }}}=123.8 \mathrm{kN}$	$\mathrm{R}_{\mathrm{B}_{-} \text {min }}=123.8 \mathrm{kN}$
Unfactored permanent load reaction at support B	$\mathrm{R}_{\mathrm{B}_{-} \text {Permanent }}=62.5 \mathrm{kN}$	
Unfactored variable load reaction at support B	$\mathrm{R}_{\text {B_Variable }}=\mathbf{2 6 . 3} \mathbf{~ k N}$	
Section details		
Section type	UC 254x254x73 (BS4-1)	
Steel grade	S275	

EN 10025-2:2004-Hot rolled products of structural steels

Nominal thickness of element
Nominal yield strength
$\mathrm{t}=\max \left(\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}\right)=14.2 \mathrm{~mm}$

Nominal ultimate tensile strength
Modulus of elasticity
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=210000 \mathrm{~N} / \mathrm{mm}^{2}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	BEAM 1 (1 No. 254x254x73kgUB)				Job no. 20	-7459
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 3	
	Calcs by SB	$\begin{array}{\|l} \text { Calcs date } \\ 19 / 09 / 2023 \end{array}$	Checked by DB	$\begin{aligned} & \text { Checked date } \\ & \text { 19/09/2023 } \end{aligned}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ \text { 19/09/2023 } \end{array}$

Partial factors - Section 6.1

Resistance of cross-sections
$\gamma_{\mathrm{m}}=1.00$
Resistance of members to instability
$\gamma_{\mathrm{M} 1}=1.00$
Resistance of tensile members to fracture
$\gamma_{\text {M } 2}=1.10$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis
$\mathrm{K}_{\mathrm{y}}=1.000$
Effective length factor in minor axis
$\mathrm{K}_{\mathrm{z}}=1.000$
Effective length factor for torsion
$K_{\text {Lt. } A}=1.000$
$K_{\text {Lt } . \mathrm{B}}=1.000$
Classification of cross sections - Section 5.5
$\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{fy}\right]=0.92$
Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{d}=200.3 \mathrm{~mm}$
$\alpha=\min \left(\left[h / 2+N_{E d} /\left(2 \times t_{w} \times f_{y}\right)-\left(t_{f}+r\right)\right] / c, 1\right)=0.817$
$\mathrm{c} / \mathrm{t}_{\mathrm{w}}=25.2 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad$ Class 1
Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section
$c=\left(b-t_{w}-2 \times r\right) / 2=110.3 \mathrm{~mm}$
$c / t_{f}=8.4 \times \varepsilon<=9 \times \varepsilon \quad$ Class 1
Section is class 1

Check shear - Section 6.2.6

Height of web $\quad h_{w}=h-2 \times t_{f}=225.7 \mathrm{~mm}$
Shear area factor

Design shear force
$\eta=1.000$
$h_{w} / t_{w}<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored

Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)
$V_{E d}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\max }\right), a b s\left(\mathrm{~V}_{\min }\right)\right)=123.8 \mathrm{kN}$
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=2562 \mathrm{~mm}^{2}$
$V_{c, R d}=V_{p l, R d}=A_{v} \times\left(f_{y} / \sqrt{ }[3]\right) / \gamma_{\mathrm{M} 0}=406.8 \mathrm{kN}$

PlanningApplications.com

Summer House, Upper Court Road

 Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701| Project BEAM 1 (1 No. $254 \times 254 \times 73 \mathrm{kgUB}$) | | | | Job no.2023-7459 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Calcs for
 Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR | | | | Start page | vision 4 |
| Calcs by SB | Calcs date 19/09/2023 | Checked by DB | Checked date 19/09/2023 | Approved by SB | Approved date 19/09/2023 |

PASS - Design shear resistance exceeds design shear force

Check bending moment major ($y-y$) axis - Section 6.2.5

Design bending moment
Design bending resistance moment - eq 6.13
Slenderness ratio for lateral torsional buckling
Correction factor - Table 6.6

Curvature factor
Poissons ratio
Shear modulus
Unrestrained length
Elastic critical buckling moment

Slenderness ratio for lateral torsional buckling
Limiting slenderness ratio
$\mathrm{M}_{\mathrm{Ed}}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \operatorname{abs}\left(\mathrm{M}_{\mathrm{s} 1 _ \text {min }}\right)\right)=108.3 \mathrm{kNm}$
$M_{c, R d}=M_{p l, R d}=W_{\text {pl. } . ~} \times f_{y} / \gamma_{M 0}=272.8 \mathrm{kNm}$
$\mathrm{k}_{\mathrm{c}}=0.94$
$\mathrm{C}_{1}=1 / \mathrm{k}_{\mathrm{c}}{ }^{2}=1.132$
$\mathrm{g}=\sqrt{ }\left[1-\left(I_{z} / I_{y}\right)\right]=0.811$
$v=0.3$
$G=E /[2 \times(1+v)]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}=1.0 \times \mathrm{L}_{\mathrm{s} 1}=\mathbf{3 5 0 0} \mathrm{mm}$
$M_{\text {cr }}=C_{1} \times \pi^{2} \times E \times I_{z} /\left(L^{2} \times g\right) \times \sqrt{ }\left[I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right]=$
1350.9 kNm
$\bar{\lambda}_{L T}=\sqrt{ }\left(W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{M}_{\text {cr }}\right)=\mathbf{0 . 4 4 9}$
$\bar{\lambda}_{L T, 0}=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, O}$-Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1
Buckling curve - Table 6.5
b
Imperfection factor - Table 6.3
$\alpha_{L T}=0.34$
Correction factor for rolled sections
$\beta=0.75$
LTB reduction determination factor
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right]=\mathbf{0 . 5 8 4}$
$\chi_{L T}=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T^{2}}\right)\right], 1,1 / \bar{\lambda}_{L T^{2}}\right)=0.981$
LTB reduction factor - eq 6.57
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=0.977$
$\chi_{L T, \text { mod }}=\min \left(\chi_{L T} / f, 1\right)=1.000$
$M_{b, R d}=\chi_{L T, \text { mod }} \times W_{\text {pl. }} \times f_{y} / \gamma_{M 1}=272.8 \mathrm{kNm}$
PASS - Design buckling resistance moment exceeds design bending moment

Check compression - Section 6.2.4

Design compression force
$N_{\mathrm{Ed}}=\mathbf{3 0 0} \mathrm{kN}$
Design resistance of section - eq 6.10
$N_{c, R d}=N_{p l, R d}=A \times f_{y} / \gamma_{M 0}=2560.3 \mathrm{kN}$

Slenderness ratio for major ($y-y$) axis buckling

Critical buckling length
$\mathrm{L}_{\mathrm{cr}, \mathrm{y}}=\mathrm{L}_{\mathrm{s} 1} \times \mathrm{K}_{\mathrm{y}}=\mathbf{3 5 0 0} \mathrm{mm}$
Critical buckling force
Slenderness ratio for buckling - eq 6.50
$\mathrm{N}_{\mathrm{cr}, \mathrm{y}}=\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}^{2}}=19300.2 \mathrm{kN}$
$\bar{\lambda}_{y}=\sqrt{ }\left[A \times f_{y} / N_{c r, y}\right]=\mathbf{0 . 3 6 4}$
Design resistance for buckling - Section 6.3.1.1
Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
b
$\alpha_{y}=0.34$
$\phi_{y}=0.5 \times\left[1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right]=\mathbf{0 . 5 9 4}$
$\chi_{y}=\min \left(1 /\left[\phi_{y}+\sqrt{ }\left(\phi_{y}{ }^{2}-\bar{\lambda}_{y}{ }^{2}\right)\right], 1\right)=0.940$
$\mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi_{\mathrm{y}} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 1}=2406.8 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force

Slenderness ratio for minor (z-z) axis buckling
Critical buckling length
$\mathrm{L}_{\mathrm{cr}, \mathrm{z}}=\mathrm{L}_{\mathrm{s} 1 \text { _seg } 1} \times \mathrm{K}_{\mathrm{z}}=\mathbf{3 5 0 0} \mathbf{~ m m}$
Critical buckling force
$\mathrm{N}_{\mathrm{cr}, \mathrm{z}}=\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{z}} / \mathrm{L}_{\mathrm{cr}, \mathrm{z}^{2}}=\mathbf{6 6 1 1 . 7} \mathrm{kN}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	BEAM 1 (1 No. 254x254x73kgUB)				2023-7459	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 5	
	Calcs by	$\begin{array}{\|l} \hline \text { Calcs date } \\ 19 / 09 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|c} \text { Checked date } \\ \text { 19/09/2023 } \end{array}$	Approved by SB	Approved date 19/09/2023

Slenderness ratio for buckling - eq $6.50 \quad \bar{\lambda}_{z}=\sqrt{ }\left[\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{N}_{\mathrm{cr}, \mathrm{z}}\right]=\mathbf{0 . 6 2 2}$
Design resistance for buckling - Section 6.3.1.1
Buckling curve - Table 6.2
c
Imperfection factor - Table 6.1
$\alpha_{z}=0.49$
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
$\phi_{z}=0.5 \times\left[1+\alpha_{z} \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right]=0.797$
$\chi_{z}=\min \left(1 /\left[\phi_{z}+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right], 1\right)=0.772$
$\mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{\mathrm{z}} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=1976.8 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force
Check torsional and torsional-flexural buckling - Section 6.3.1.4
Torsional buckling length factor
Torsional buckling length
$\mathrm{K}_{\mathrm{T}}=1.00$

Distance from shear centre to centroid in y axis
$L_{\text {cr, }, T}=\max \left(L_{s 1}, L_{s 1 _ \text {seg } 1}\right) \times K_{T}=3500 \mathrm{~mm}$

Distance from shear centre to centroid in z axis
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{z}_{0}=\mathbf{0 . 0} \mathrm{mm}$
Radius of gyration
$\mathrm{i}_{0}=\sqrt{ }\left[\mathrm{i}_{\mathrm{y}}{ }^{2}+\mathrm{i}_{\mathrm{z}}{ }^{2}\right]=128.3 \mathrm{~mm}$
Elastic critical torsional buckling force
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}_{0}{ }^{2} \times\left[\mathrm{G} \times \mathrm{I}_{\mathrm{t}}+\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{w}} / \mathrm{L}_{\mathrm{cr}, \mathrm{T}^{2}}\right]=\mathbf{8 6 1 2 . 4} \mathrm{kN}$
Torsion factor
$\beta_{\mathrm{T}}=1-\left(\mathrm{y}_{0} / \mathrm{i}_{0}\right)^{2}=1.000$
Elastic critical torsional-flexural buckling force

$$
N_{c r, T F}=N_{c r, y} /\left(2 \times \beta_{T}\right) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / i_{0}\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=8612.4 \mathrm{kN}
$$

Elastic critical buckling force
$N_{\mathrm{cr}}=\min \left(\mathrm{N}_{\mathrm{cr}, \mathrm{T}}, \mathrm{N}_{\mathrm{cr}, \mathrm{TF}}\right)=\mathbf{8 6 1 2 . 4} \mathrm{kN}$
$\bar{\lambda}_{T}=\sqrt{ }\left[A \times f_{y} / N_{\text {cr }}\right]=0.545$

Design resistance for buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
c
$\alpha_{T}=0.49$
$\phi_{T}=0.5 \times\left[1+\alpha_{T} \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}_{T}{ }^{2}\right]=0.733$
$\chi_{T}=\min \left(1 /\left[\phi_{T}+\sqrt{ }\left(\phi_{T}{ }^{2}-\bar{\lambda}_{T}{ }^{2}\right)\right], 1\right)=0.817$
$\mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi_{\mathrm{T}} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=2092.7 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force

Combined bending and axial force - Section 6.2.9

Normal force to plastic resistance force ratio
$\mathrm{n}=\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{pl}, \mathrm{Rd}}=0.12$
Web area to gross area ratio
$\mathrm{a}_{\mathrm{w}}=\min \left(\left(\mathrm{A}-2 \times \mathrm{b} \times \mathrm{t}_{\mathrm{f}}\right) / \mathrm{A}, 0.5\right)=\mathbf{0 . 2 2}$
Design plastic moment resistance - eq 6.13
$M_{p l, R d}=W_{\text {pl. }} \times f_{y} / \gamma_{M 0}=272.8 \mathrm{kNm}$
Reduced plastic moment resistance - eq 6.36
$M_{N, R d}=M_{p l, R d} \times \min \left((1-n) /\left(1-0.5 \times a_{w}\right), 1\right)=271.1 \mathrm{kNm}$

PASS-Reduced bending resistance moment exceeds design bending moment
Check combined bending and compression-Section 6.3.3
Equivalent uniform moment factors - Table B. $3 \quad \mathrm{M}_{\mathrm{hy}}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{sy}}=108 \mathrm{kNm}$
$\psi_{y}=1.000$
$\alpha_{\text {hy }}=M_{\text {hy }} / M_{\text {sy }}=\mathbf{0 . 0 0 0}$
$\mathrm{C}_{\text {my }}=0.95+0.05 \times \alpha_{\text {hy }}=\mathbf{0 . 9 5 0}$
$\mathrm{M}_{\mathrm{hz}}=\mathbf{0} \mathrm{kNm}$
$\mathrm{M}_{\mathrm{sz}}=0 \mathrm{kNm}$
$\psi_{z}=1.000$
$C_{m z}=0.6+0.4 \times \psi_{z}=1.000$
$\mathrm{M}_{\mathrm{hLT}}=\mathbf{0} \mathrm{kNm}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	BEAM 1 (1 No. 254x254x73kgUB)				2023-7459	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 6	
	Calcs by SB	$\begin{array}{\|l} \text { Calcs date } \\ 19 / 09 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|l} \text { Checked date } \\ 19 / 09 / 2023 \end{array}$	Approved by SB	Approved date $19 / 09 / 2023$

$$
\begin{aligned}
& M_{\text {SLT }}=108 \mathrm{kNm} \\
& \psi_{\text {LT }}=1.000 \\
& \alpha_{\text {hLT }}=M_{\text {hLT }} / M_{\text {SLT }}=\mathbf{0 . 0 0 0} \\
& C_{\text {mLT }}=0.95+0.05 \times \alpha_{\text {hLT }}=\mathbf{0 . 9 5 0}
\end{aligned}
$$

Interaction factors \mathbf{k}_{ij} for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic resistance to normal force Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62

Check vertical deflection - Section 7.2.1
Consider deflection due to variable loads
Limiting deflection
Maximum deflection span 1
$\mathrm{M}_{\mathrm{Rk}}=\mathrm{W}_{\mathrm{pl.y}} \times \mathrm{f}_{\mathrm{y}}=272.8 \mathrm{kNm}$
$\mathrm{N}_{\mathrm{Rk}}=\mathrm{A} \times \mathrm{f}_{\mathrm{y}}=\mathbf{2 5 6 0 . 3} \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left[1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right]=0.969$
$\mathrm{k}_{\mathrm{zy}}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\left(\mathrm{C}_{\mathrm{mLT}}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{RK}} / \gamma_{\mathrm{M} 1}\right)=0.987$
$N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma_{M 1}\right)+\mathrm{k}_{\mathrm{yy}} \times \mathrm{M}_{\mathrm{Ed}} /\left(\chi_{\mathrm{LT}} \times \mathrm{M}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=\mathbf{0 . 5 1 7}$
$N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma_{M 1}\right)+k_{z y} \times M_{E d} /\left(\chi L T \times M_{R k} / \gamma_{M 1}\right)=0.551$
PASS - Combined bending and compression checks are satisfied

$$
\begin{aligned}
& \delta_{\lim }=\mathrm{L}_{\mathrm{s} 1} / 360=9.7 \mathrm{~mm} \\
& \delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=1.223 \mathrm{~mm}
\end{aligned}
$$

PASS - Maximum deflection does not exceed deflection limit

- Tekla Tedds PlanningApplications.com Summer House, Upper Court Rd Woldingham SURREY CR3 7BF Tel:0203 2949477 Mob:07922 148701 support@planningapplications.com	Project BEAM 2 (1 No. 203x133x25kgUB) Beam \& 8mm plate x				$\begin{array}{\|ll\|} \hline \text { Job no. } & \\ & 2023-7459 \end{array}$	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 1	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 19 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{aligned} & \hline \text { Checked date } \\ & 19 / 09 / 2023 \end{aligned}$	Approved by SB	$\begin{gathered} \hline \text { Approved date } \\ 19 / 09 / 2023 \end{gathered}$

STEEL MASONRY SUPPORT

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Steel member details

Torsion beam
Masonry support plate
Steel grade of support plate
Design strength of support plate
Modulus of elasticity
Constant
Length of plate beyond beam
Total length of plate
Thickness of plate
Width of main beam
Area of plate
Distance from weld position to CoG

Supported materials detail

Density of masonry on main beam
Width of masonry on main beam
Height of masonry on main beam Eccentricity of main beam material
Add dead force main beam (not from masonry)
Add live force main beam (not from masonry)
Density of masonry on support beam
Width of masonry on support beam
Height of masonry on support beam

UB $203 \times 133 \times 25$
User
S275
$p_{\text {ysb }}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{ }\left(275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\text {ysb }}\right)=1.000$
$\mathrm{I}_{\mathrm{h}}=130 \mathrm{~mm}$
$I_{\text {plate }}=270 \mathrm{~mm}$
$\mathrm{t}_{\mathrm{sb}}=8 \mathrm{~mm}$
$B_{m b}=133 \mathrm{~mm}$
$A_{\text {sbu }}=t_{\text {sb }} \times I_{\text {plate }}=2160.0 \mathrm{~mm}^{2}$
$C_{\text {yysb }}=I_{\mathrm{h}} / 2-\left(I_{\text {plate }}-I_{\mathrm{h}}\right) / 2=-5 \mathrm{~mm}$
$\rho_{\mathrm{m}, \mathrm{mb}}=10.0 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{b}_{\mathrm{mmb}}=\mathbf{1 0 0} \mathrm{mm}$
$\mathrm{h}_{\mathrm{mmb}}=\mathbf{3 0 0} \mathrm{mm}$
$\mathrm{e}_{\mathrm{mb}}=50 \mathrm{~mm}$
$P_{\text {Gaddmb }}=0.0 \mathrm{kN} / \mathrm{m}$
$P_{\text {Qaddmb }}=0.0 \mathrm{kN} / \mathrm{m}$
$\rho_{\mathrm{m}, \mathrm{sb}}=10.0 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{b}_{\mathrm{msb}}=100 \mathrm{~mm}$
$\mathrm{h}_{\text {msb }}=\mathbf{5 0 0} \mathrm{mm}$

Tedds
PlanningApplications.com
Summer House, Upper Court Rd Woldingham SURREY CR3 7BF
Tel:0203 2949477 Mob:07922 148701 support@ planningapplications.com

Project BEAM 2 (1 No. $203 \times 133 \times 25 \mathrm{kgUB}$) Beam \& 8 mm plate x				Job no.2023-7459	
Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				tart page no./Revision 2	
Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 19 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 19 / 09 / 2023 \end{array}$	Approved by SB	$\begin{gathered} \hline \text { Approved date } \\ 19 / 09 / 2023 \end{gathered}$

Add dead force support beam (not from masonry)
Add live force support beam (not from masonry)

Geometry

Cavity width
Supported width of masonry
Biaxial stress effects in the plate (SCI-P-110)
Maximum overall bending moment
Dist to NA combined section (CoG torsion beam)
Second moment of area of combined section
Elastic section modulus of combined section
Section modulus of plate
Eccentricity of support beam masonry
Force of masonry on support plate
Bending at heel
Moment capacity of plate

Longitudinal stress due to overall bending
Constant relating to Von Mises curve
Transverse bending stress ratio limit
Transverse bending stress ratio
$P_{\text {Gaddsb }}=0.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{P}_{\text {Qaddsb }}=0.0 \mathrm{kN} / \mathrm{m}$
$c=100 \mathrm{~mm}$
$\mathrm{d}_{\mathrm{m}}=\mathrm{I}_{\mathrm{h}}+\mathrm{e}_{\mathrm{mb}}-\mathrm{c}=\mathbf{8 0} \mathbf{m m}$
$\mathrm{M}_{\mathrm{x}}=\mathbf{3 2 . 6} \mathrm{kNm}$
$y_{e, a l l}=\left(D_{m b}+t_{\text {sb }}\right) \times A_{\text {sbu }} /\left(2 \times\left(A_{m b}+A_{\text {sbu }}\right)\right)=43 \mathrm{~mm}$
$I_{x x, a l l}=\left(I_{x x m b}+A_{m b} \times y_{e, a l l}{ }^{2}\right)+A_{s b u} \times\left(D_{m b} / 2+t_{s b} / 2-y_{e, a l l}\right)^{2}=3778 \mathrm{~cm}^{4}$
$Z_{x x, a l l}=I_{x x, \text { all }} /\left(D_{m b} / 2+t_{s b}-y_{e, a l l}\right)=563.66 \mathrm{~cm}^{3}$
$Z_{\text {xx, plate }}=1 \mathrm{~m} \times \mathrm{t}_{\mathrm{sb}}{ }^{2} /(6 \times 1 \mathrm{~m})=\mathbf{1 0 . 6 7} \mathrm{cm}^{3} / \mathrm{m}$
$\mathrm{e}_{1}=95 \mathrm{~mm}$
$\mathrm{P}_{1}=\left(\mathrm{b}_{\mathrm{msb}} \times \mathrm{h}_{\mathrm{msb}} \times \rho_{\mathrm{m}, \mathrm{sb}}+\mathrm{P}_{\mathrm{Gaddsb}}\right) \times \gamma_{\mathrm{fG}}+\mathrm{P}_{\text {Qaddsb }} \times \gamma_{\mathrm{fQ}}=0.7 \mathrm{kN} / \mathrm{m}$
$M_{x, \text { plate }}=P_{1} \times e_{1}=0.1 \mathrm{kNm} / \mathrm{m}$
$M_{c}=1.2 \times Z_{\text {x,plate }} \times p_{\text {ysb }}=3.5 \mathrm{kNm} / \mathrm{m}$
PASS - Design strength exceeds stress at heel
$\sigma_{1}=M_{x} / Z_{x x, a l l}=57.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{c}_{\mathrm{fp}}=\left(4 \times \mathrm{p}_{\mathrm{ysb}}{ }^{2}-3 \times \sigma_{1}{ }^{2}\right)^{0.5}=\mathbf{5 4 0 . 8} \mathrm{N} / \mathrm{mm}^{2}$
$\alpha_{t s}=\left(c_{f p}{ }^{2}-\sigma_{1}{ }^{2}\right) /\left(2 \times c_{f p} \times p_{y s b}\right)=0.972$
$\alpha_{\text {ls }}=M_{\mathrm{x}, \text { plate }} / M_{c}=0.019$
PASS - Transverse bending stress ratio less than allowable limit

Deflection at toe

Unfactored force on support angle
Distance from weld to load position
Length of load resultant to edge of plate
Dist from weld to load position as ratio of length
Effective second moment of inertia
Deflection at toe
Deflection limit
$P_{1 s L s}=b_{m s b} \times h_{m s b} \times \rho_{m, s b}+P_{\text {Gaddsb }}+P_{\text {Qaddsb }}=0.5 \mathrm{kN} / \mathrm{m}$
$a_{m}=e_{1}=95 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{m}}=\mathrm{l}_{\mathrm{h}}-\mathrm{e}_{1}=\mathbf{3 5} \mathrm{mm}$
$a_{l}=a_{m} /\left(a_{m}+b_{m}\right)=0.731$
$l_{\text {eff_def }}=t_{\text {sb }}{ }^{3} / 12=42667 \mathrm{~mm}^{4} / \mathrm{m}$
$\delta=\left(\mathrm{a}_{1}{ }^{2} \times\left(3-\mathrm{a}_{\mathrm{l}}\right) / 6\right) \times\left(\mathrm{P}_{1 \mathrm{SLs}} \times\left(\mathrm{a}_{\mathrm{m}}+\mathrm{b}_{\mathrm{m}}\right)^{3}\right) /\left(\mathrm{E}_{\text {S5950 }} \times \mathrm{l}_{\text {eff_def }}\right)=0.03 \mathrm{~mm}$
$\delta_{\text {lim }}=1.80 \mathrm{~mm}$
PASS - Deflection is within specified criteria

Weld details - assume a full length weld and that the plate acts as a propped cantilever with the prop at the weld position and the fixed end at the centre of the torsion beam

Leg length of weld
Throat size of weld
Shear force at weld position
Maximum possible force in plate
Longitudinal shear between beam and plate
Horizontal shear between beam and plate
Resultant weld force
Strength of weld (Table 37)
Capacity of full length weld
$\mathrm{s}_{\text {weld }}=\mathbf{6 m m}$
$a_{\text {weld }}=1 / \sqrt{ }(2) \times s_{\text {weld }}=4.2 \mathrm{~mm}$
$R_{A}=P_{1} \times \operatorname{maX}\left(\left(1+\left(3 \times e_{1}\right) /\left(2 \times B_{m b} / 2\right)\right), 1.4\right)=2.2 \mathrm{kN} / \mathrm{m}$
$R_{p}=\left(l_{h}+B_{m b}\right) \times t_{s b} \times p_{\text {ysb }}=579.0 \mathrm{kN}$
$R_{I}=2 \times R_{p} / L=330.9 \mathrm{kN} / \mathrm{m}$
$R_{h}=P_{1} \times e_{1} /\left(s_{\text {weld }} / 2+t_{s b} / 2\right)=9.5 \mathrm{kN} / \mathrm{m}$
$R_{\text {weld }}=\left(R_{A}{ }^{2}+R_{l}{ }^{2}+R_{h}{ }^{2}\right)^{0.5}=0.331 \mathrm{kN} / \mathrm{mm}$
$p_{\text {weld }}=220.0 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{c, \text { weld }}=a_{\text {weld }} \times p_{\text {weld }}=0.933 \mathrm{kN} / \mathrm{mm}$
PASS - Capacity of weld exceeds resultant force on weld

Torsional loading ULS

Loading of support beam masonry
Loading of main beam masonry

$$
\begin{aligned}
& \mathrm{w}_{\text {1ULs }}=\left(\mathrm{h}_{\mathrm{msb}} \times \mathrm{b}_{\mathrm{msb}} \times \rho_{\mathrm{m}, \mathrm{sb}}+\mathrm{P}_{\mathrm{Gaddsb}}\right) \times \gamma_{\mathrm{fG}}+\mathrm{P}_{\mathrm{Qaddsb}} \times \gamma_{\mathrm{fQ}}=0.70 \mathrm{kN} / \mathrm{m} \\
& \mathrm{w}_{\text {2ULs }}=\left(\mathrm{h}_{\mathrm{mmb}} \times \mathrm{b}_{\mathrm{mmb}} \times \rho_{\mathrm{m}, \mathrm{mb}}+\mathrm{P}_{\mathrm{Gaddmb}}\right) \times \gamma_{\mathrm{fG}}+\mathrm{P}_{\text {Qaddmb }} \times \gamma_{\mathrm{fQ}}=0.42 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Tekla Tedds PlanningApplications.com Summer House, Upper Court Rd Woldingham SURREY CR3 7BF Tel:0203 2949477 Mob:07922 148701 support@planningapplications.com	Project BEAM 2 (1 No. 203x133x25kgUB) Beam \& 8mm plate x				$\begin{array}{\|ll\|} \hline \text { Job no. } & \\ & 2023-7459 \end{array}$	
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 3	
	Calcs by SB	$\begin{array}{\|l} \hline \text { Calcs date } \\ 19 / 09 / 2023 \end{array}$	Checked by DB	$\begin{gathered} \hline \text { Checked date } \\ 19 / 09 / 2023 \end{gathered}$	Approved by SB	$\begin{gathered} \hline \text { Approved date } \\ 19 / 09 / 2023 \end{gathered}$

Self weight of support beam

$$
\begin{aligned}
& W_{\text {3uLs }}=A_{\text {sbu }} \times \rho_{\text {sb }} \times \gamma_{\mathrm{fG}}=0.24 \mathrm{kN} / \mathrm{m} \\
& \mathrm{w}_{1 \text { SLs }}=\mathrm{h}_{\mathrm{msb}} \times \mathrm{b}_{\mathrm{msb}} \times \rho_{\mathrm{m}, \mathrm{sb}}+\mathrm{P}_{\text {Gaddsb }}+\mathrm{P}_{\text {Qaddsb }}=\mathbf{0 . 5 0} \mathrm{kN} / \mathrm{m} \\
& \mathrm{w}_{2 S L \mathrm{~s}}=\mathrm{h}_{\mathrm{mmb}} \times \mathrm{b}_{\mathrm{mmb}} \times \rho_{\mathrm{m}, \mathrm{mb}}+\mathrm{P}_{\text {Gaddmb }}+\mathrm{P}_{\text {Qaddmb }}=\mathbf{0 . 3 0} \mathrm{kN} / \mathrm{m} \\
& \mathrm{w}_{3 \mathrm{sLs}}=\mathrm{A}_{\mathrm{sbu}} \times \rho_{\mathrm{sb}}=0.17 \mathrm{kN} / \mathrm{m} \\
& \mathrm{e}_{0 \mathrm{mb}}=\mathbf{0} \mathrm{mm} \\
& \mathrm{e}_{1 \mathrm{mb}}=\left(\mathrm{B}_{\mathrm{mb}}+\mathrm{b}_{\mathrm{msb}}\right) / 2+\mathrm{c}-\mathrm{e}_{\mathrm{mb}}=167 \mathrm{~mm} \\
& \mathrm{e}_{2 \mathrm{mb}}=\left(\mathrm{B}_{\mathrm{mb}}-\mathrm{b}_{\mathrm{mmb}}\right) / 2-\mathrm{e}_{\mathrm{mb}}=-33 \mathrm{~mm} \\
& \mathrm{e}_{3 \mathrm{mb}}=\mathrm{B}_{\mathrm{mb}} / 2+\mathrm{c}_{\text {yysb }}=\mathbf{6 2} \mathrm{mm} \\
& \mathrm{~T}_{\mathrm{q}}=\mathrm{T}_{\text {quLs }} \times \mathrm{L}=0.41 \mathrm{kNm} \\
& \mathrm{~T}_{\mathrm{qSLS}}=\mathrm{abs}\left(\mathrm{w}_{1 S L S} \times \mathrm{e}_{1 \mathrm{mb}}+\mathrm{w}_{2 S L s} \times \mathrm{e}_{2 \mathrm{mb}}+\mathrm{w}_{3 S L S} \times \mathrm{e}_{3 \mathrm{mb}}\right)=0.08 \mathrm{kNm} / \mathrm{m} \\
& \mathrm{~T}_{\mathrm{qu}}=\mathrm{T}_{\text {qSLs }} \times \mathrm{L}=0.29 \mathrm{kNm}
\end{aligned}
$$

Eccentricities

Distance to shear centre of main beam
Eccentricity of support beam masonry
Eccentricity of main beam masonry
Eccentricity of support beam

Torsional effects

Applied torque (ULS) $\quad T_{\text {quLs }}=\operatorname{abs}\left(\mathrm{w}_{1 u L s} \times \mathrm{e}_{1 \mathrm{mb}}+\mathrm{w}_{2 U L s} \times \mathrm{e}_{2 \mathrm{mb}}+\mathrm{w}_{3 U L S} \times \mathrm{e}_{3 \mathrm{mb}}\right)=0.12 \mathrm{kNm} / \mathrm{m}$
Total torque (ULS)
Applied torque (SLS)
Total torque (SLS)

STEEL BEAM TORSION DESIGN

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Section details

Section type
UB $203 \times 133 \times 25$
Steel grade S275
Design stength
$p_{y w}=p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
Constant
$\varepsilon=\sqrt{ }\left(275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right)=\mathbf{1 . 0 0 0}$
Geometry - Beam unrestrained against lateral-torsional buckling between supports.
Effective span
$\mathrm{L}=3500 \mathrm{~mm}$
Length of segment for LT buckling
$\mathrm{L}_{\mathrm{Lt}}=2550 \mathrm{~mm}$
Compression flanges laterally restrained
Both flanges free to rotate on plan
Effective length for LT buckling
$L_{E_{-}}{ }^{\text {Lt }}=\mathrm{L}_{\text {LT }} \times 1.0=\mathbf{2 5 5 0} \mathbf{~ m m}$

Loading - Torsional loading comprises only full-length uniformly distributed load(s)

Internal forces \& moments on member under factored loading for uls design

Applied shear force
Maximum bending moment
Applied torque
Minor axis bending moment
Compression force

Equivalent uniform moment factors

EUM factor (CI. 4.3.6.6 and T18)
$F_{v y}=43.0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{LT}}=\mathrm{M}_{\mathrm{x}}=\mathbf{3 2 . 6 2 \mathrm { kNm }}$
$\mathrm{T}_{\mathrm{q}}=0.41 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kNm}$
$\mathrm{F}_{\mathrm{c}}=0 \mathrm{kN}$
$m_{L T}=1.000$

Torsional deflection parameters

Beam is torsion fixed and warping free at each end. (as defined in SCI-P-057 section 2.1.6) - Appendix B case 4

Dist along the beam for first derivative of twist
Dist along the beam for second derivative of twist
First derivative of angle of twist
$z_{1}=0 \mathrm{~mm}$

$$
\begin{aligned}
& z_{2}=L / 2=1750 \mathrm{~mm} \\
& \phi_{1}^{\prime}=T_{q} /(G \times J) \times a / L \times\left[L^{2} /(2 \times a) \times\left(1 / L-2 \times z_{1} / L^{2}\right)+\right.
\end{aligned}
$$

$\left.\sinh \left(z_{1} / a\right)-\tanh (L /(2 \times a)) \times \cosh \left(z_{1} / a\right)\right] \times 1$ rads $=1.79 \times 10^{-2} \mathrm{rads} / \mathrm{m}$

Tekla Tedds PlanningApplications.com Summer House, Upper Court Rd Woldingham SURREY CR3 7BF Tel:0203 2949477 Mob:07922 148701 support@planningapplications.com	Project \quad BEAM 2 (1 No. $203 \times 133 \times 25 \mathrm{kgUB})$ Beam \& 8mm plate x Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Job no. $2023-7459$ Start page no./Revision 4	
	Calcs by	$\begin{aligned} & \hline \text { Calcs date } \\ & 19 / 09 / 2023 \end{aligned}$	hecked by DB	$\begin{aligned} & \hline \text { Checked date } \\ & 19 / 09 / 2023 \end{aligned}$	Approved by SB	$\begin{array}{\|r\|} \hline \text { Approved date } \\ 19 / 09 / 2023 \end{array}$

Third derivative of angle of twist

Angle of twist

Second derivative of angle of twist

Design parameters

Total angle of twist
First derivative of ϕ
Second derivative of ϕ
Third derivative of ϕ
Section classification

$$
\begin{aligned}
& \phi "{ }^{\prime}{ }_{1}=T_{q} /\left(G \times J \times a^{2}\right) \times a / L \times\left[\sinh \left(z_{1} / a\right)-\tanh (L /(2 \times a)) \times\right. \\
& \left.\cosh \left(z_{1} / a\right)\right] \times 1 \text { rads }=\mathbf{- 2 . 0 1} \times \mathbf{1 0}^{-2} \mathrm{rads} / \mathrm{m}^{3} \\
& \left(z_{2} / a\right)-\tanh (L /(2 \times a)) \times \sinh \left(z_{2} / a\right) \\
& \phi{ }^{\prime \prime}=T_{q} /(G \times J \times a) \times a / L \times\left[\cosh \left(z_{2} / a\right)-\tanh (L /(2 \times a)) \times\right. \\
& \left.\sinh \left(z_{2} / a\right)-1\right] \times 1 \text { rads }=-1.48 \times 10^{-2} \mathrm{rads} / \mathrm{m}^{2} \\
& \phi=\operatorname{abs}\left(\phi_{2}\right)=0.019 \mathrm{rads} \\
& \phi^{\prime}=\operatorname{abs}\left(\phi_{1}^{\prime}\right)=1.79 \times 10^{-2} \mathrm{rads} / \mathrm{m} \\
& \phi "=\operatorname{abs}\left(\phi{ }^{2} 2\right)=1.48 \times 10^{-2} \mathrm{rads} / \mathrm{m}^{2} \\
& \phi "=\operatorname{abs}\left(\phi{ }^{\prime \prime}{ }_{1}\right)=2.01 \times 10^{-2} \mathrm{rads} / \mathrm{m}^{3} \\
& \text { b / T = } 8.5 \\
& \mathrm{~d} / \mathrm{t}=30.2 \\
& r_{1 s}=\min \left(1.0, \max \left(-1.0, F_{c} /\left(d \times t \times p_{y w}\right)\right)\right)=\mathbf{0 . 0 0 0} \\
& \mathrm{r}_{2 \mathrm{~s}}=\mathrm{F}_{\mathrm{c}} /\left(\mathrm{A}_{\mathrm{g}} \times \mathrm{p}_{\mathrm{yw}}\right)=\mathbf{0 . 0 0 0}
\end{aligned}
$$

Section classification is plastic

Shear capacity (parallel to y-axis)

Design shear force
Design shear resistance (CI. 4.2.3)

Moment capacity (x-axis)

Design bending moment
Moment capacity
Moment capacity low shear (CI. 4.2.5.1)

Lateral torsional buckling

Effective length for lateral torsional buckling
Slenderness ratio
Buckling parameter
Flange ratio
Torsional index
Slenderness factor
Ratio - cl 4.3.6.9
Equvalent slenderness - cl 4.3.6.7
Limiting slendernes - Annex B2.2
Euler stress
Perry factor

Bending strength
Buckling resistance moment
Max moment governing buckling resistance
Equiv uniform moment factor for LTB
$F_{v y}=43.0 \mathrm{kN}$
$P_{v y}=0.6 \times p_{y} \times A_{v y}=191.1 \mathrm{kN}$
Pass - Shear
$\mathrm{M}_{\mathrm{x}}=32.6 \mathrm{kNm}$
$M_{c x u}=p_{y} \times S_{x}=70.9 \mathrm{kNm}$
$M_{c x}=\min \left(p_{y} \times S_{x}, 1.2 \times p_{y} \times Z_{x}\right)=70.9 \mathrm{kNm}$
Pass-Moment capacity exceeds design bending moment
$\mathrm{L}_{\mathrm{E} \text { _Lt }}=\mathbf{2 5 5 0} \mathbf{~ m m}$
$\lambda=\mathrm{L}_{\mathrm{E} \text { _Lt }} / \mathrm{r}_{\mathrm{y}}=\mathbf{8 2}$
$\mathrm{u}=0.877$
$\eta=0.5$
$\mathrm{x}=25.6$
$v=1 /\left(1+0.05 \times(\lambda / x)^{2}\right)^{0.25}=\mathbf{0 . 9 0}$
$\beta_{w}=1.0=1.000$
$\lambda_{L T}=u \times v \times \lambda \times \sqrt{ }\left(\beta_{w}\right)=65$
$\lambda_{\mathrm{L} 0}=0.4 \times \sqrt{ }\left(\pi^{2} \times \mathrm{E}_{\mathrm{S} 5950} / \mathrm{p}_{\mathrm{y}}\right)=34$
$p_{E}=\pi^{2} \times E_{S 5950} / \lambda_{L T}{ }^{2}=479 \mathrm{~N} / \mathrm{mm}^{2}$
$\eta_{L T}=\max \left(7.0 \times\left(\lambda_{L T}-\lambda_{L O}\right) / 1000,0\right)=0.215$
$\phi L T=\left(p_{y}+(\eta L T+1) \times p_{E}\right) / 2=428574344.389$
$p_{\mathrm{b}}=p_{\mathrm{E}} \times p_{\mathrm{y}} /\left(\phi L \tau+\sqrt{ }\left(\phi L \tau^{2}-p_{\mathrm{E}} \times p_{\mathrm{y}}\right)\right)=201 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{M}_{\mathrm{b}}=\mathrm{p}_{\mathrm{b}} \times \mathrm{S}_{\mathrm{x}}=51.8 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{Lt}}=32.6 \mathrm{kNm}$
$\mathrm{m}_{\text {LT }}=1.00$
$\mathrm{M}_{\mathrm{b}} / \mathrm{m}_{\mathrm{LT}}=51.8 \mathrm{kNm}$

PlanningApplications.com
Summer House, Upper Court Rd Woldingham SURREY CR3 7BF

Tel:0203 2949477 Mob:07922 148701
support@planningapplications.com

Project BEAM 2 (1 No. 203x133x25kgUB) Beam \& 8mm plate x				Job no.2023-7459	
Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 5	
Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Approved by SB	$\begin{gathered} \hline \text { Approved date } \\ 19 / 09 / 2023 \end{gathered}$

Pass - lat. tors. buckling

Buckling under combined bending \& torsion -SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Span factor
Angle of twist
Second derivative of ϕ
Induced minor axis moment
Normal stress at flange tip due to M_{yt}
Normal stress at flange tip due to warping Interaction index

$$
\begin{aligned}
& \mathrm{L} / \mathrm{a}=\mathbf{3 . 0 9} \\
& \phi=0.019 \mathrm{rads} \\
& \phi=14.8 \times 10^{-3} \mathrm{rads} / \mathrm{m}^{2} \\
& \mathrm{M}_{\mathrm{yt}}=\mathrm{M}_{\mathrm{x}} \times \phi / 1 \mathrm{rad}=\mathbf{0 . 6 3 \mathrm { kNm }} \\
& \sigma_{\mathrm{byt}}=\mathrm{M}_{\mathrm{yt}} / \mathrm{Z}_{\mathrm{y}}=14 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{w}}=\mathrm{E}_{\mathrm{s} 5950} \times \mathrm{W}_{\mathrm{n} 0} \times \phi " / 1 \mathrm{rad}=\mathbf{2 0 ~ N} / \mathrm{mm}^{2} \\
& \mathrm{i}_{\mathrm{b}}=\mathrm{M}_{\mathrm{x}} \times \mathrm{m}_{\mathrm{LT}} / \mathrm{M}_{\mathrm{b}}+\left(\sigma_{\mathrm{byt}}+\sigma_{\mathrm{w}}\right) / \mathrm{p}_{\mathrm{y}} \times\left(1+0.5 \times \mathrm{M}_{\mathrm{x}} \times \mathrm{m}_{\text {LT }} / \mathrm{M}_{\mathrm{b}}\right)=\mathbf{0 . 7 9}
\end{aligned}
$$

Pass - Combined bending and torsion check satisfied

Local capacity under combined bending \& torsion

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.
Max. direct stress due to M_{x}

$$
\begin{aligned}
& \sigma_{\mathrm{bx}}=M_{\mathrm{x}} / Z_{\mathrm{x}}=142 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{bx}}+\sigma_{\mathrm{byt}}+\sigma_{\mathrm{w}}=175 \mathrm{~N} / \mathrm{mm}^{2} \\
& p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Pass - Local capacity

Combined shear stresses - SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum shear stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max shear stresses due to bending in web
Max shear stresses due to bending in flange
Max shear stresses due to torsion in web
Max shear stresses due to torsion in flange
Max shear stresses due to warping in flange
Amp shear stress torsion \& warping in web
Amp shear stress torsion \& warping in flange
$\tau_{b w}=F_{v y} \times Q_{w} /\left(I_{x} \times t\right)=42 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {bf }}=F_{v y} \times Q_{f} /\left(I_{x} \times T\right)=12 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{tw}}=\operatorname{abs}\left(\mathrm{G} \times \mathrm{t} \times \phi^{\prime} / 1 \mathrm{rad}\right)=8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{tf}}=\mathrm{abs}\left(\mathrm{G} \times \mathrm{T} \times \phi^{\prime} / 1 \mathrm{rad}\right)=\mathbf{1 1} \mathrm{N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{wf}}=\operatorname{abs}\left(-\mathrm{E}_{\mathrm{s} 5950} \times \mathrm{S}_{\mathrm{w} 1} \times \phi\right.$ " $\left./ 1 \mathrm{rad} / \mathrm{T}\right)=1 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{vtw}}=\tau_{\mathrm{tw}} \times\left(1+0.5 \times \mathrm{M}_{\mathrm{x}} \times \mathrm{m}_{\mathrm{LT}} / \mathrm{M}_{\mathrm{b}}\right)=11 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{vff}}=\left(\tau_{\mathrm{tf}}+\tau_{\mathrm{wf}}\right) \times\left(1+0.5 \times \mathrm{M}_{\mathrm{x}} \times \mathrm{m}_{\mathrm{LT}} / \mathrm{M}_{\mathrm{b}}\right)=16 \mathrm{~N} / \mathrm{mm}^{2}$

Combined shear stresses due to bending, torsion \& warping:

Combined shear stresses in web
$\tau_{\mathrm{w}}=\tau_{\mathrm{bw}}+\tau_{\mathrm{vtw}}=52 \mathrm{~N} / \mathrm{mm}^{2}$
Combined shear stresses in flange
$\tau_{\mathrm{f}}=\tau_{\mathrm{bf}}+\tau_{\mathrm{vff}}=27 \mathrm{~N} / \mathrm{mm}^{2}$
Shear strength
$p_{v}=0.6 \times p_{y}=165 \mathrm{~N} / \mathrm{mm}^{2}$
Pass-Combined shear stresses

Twist check

Total applied torque (unfactored)
Maximum twist under sls loading
Twist limit
$\mathrm{T}_{\text {qu }}=0.29 \mathrm{kNm}$
$\phi_{\text {sls }}=\phi \times \mathrm{T}_{\mathrm{qu}} / \mathrm{T}_{\mathrm{q}}=\mathbf{0 . 7 9 \mathrm { deg }}$
ϕ lim $=2.50 \mathrm{deg}$
Pass - Twist

Deflection

Maximum y-axis deflection
Deflection limit - cl. 2.5.2
$\delta_{y _\max }=0.5 \mathrm{~mm}$
$\delta_{\text {lim }}=\min \left(L / k_{\delta}, \delta_{\text {lim_abs }}\right)=9.7 \mathrm{~mm}$
Pass-Deflection within specified limit

