

SUMMARY

Beam 1 - 254x254x73kgUB S275 to support 300mm cavity wall existing rear structure. 3800mm total length - dimension to be checked on site.

Beam 2 - 203x133x25kgUB S275 + 8mm x 270mm S275 welded plate to support 300mm cavity wall & permit facing brickwork to outer leaf to proposed single storey extension. 3800mm total length - dimension to be checked on site.

Beam 3 - 3 x pre-stressed 65x100mm concrete lintels to span over new doorway opening. 1150mm total length - dimension to be checked on site.

Tekla Tedds	Project Job no. BEAM 3 - concrete lintels 20					3-7459
PlanningApplications.com	Calcs for	ama 29 Hartfield I	Start page no./Revision			
Summer House, Upper Court Rd	Mr Wisidag		2			
Tel:0203 294 9477 Mob:07922 148 701	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
support@planningapplications.com	SB	19/09/2023	DB	19/09/2023	SB	19/09/2023

Load Span Tables for Prestressed Lintels

CE

4" x 3" Prestressed Concrete Lintels 65mm x 100mm

HUGHES

Nominal Length	Safe Load Capacity ¹ On Edge	Safe Load Capacity ¹ On Flat
mm	kN/m	kN/m
	Rm = 0.53 kNm	Rm = 0.21 kNm
900	37.43	22.27
1050	33.54	20.66
1200	29.65	19.05
1350	25.76	17.44
1500	21.87	15.83
1650	17.98	14.22
1800	14.09	12.61
1950	10.20	11.01
2100	7.54	8.88
2250	6.29	6.76
2400	5.24	4.64

BEAM 3

Lintel PASS Calc Span 900mm, laid flat side, max load capacity 22.27 Actual load condition = 2kNm Therefore PASS

	Project	Job no.					
PlanningApplications.com	BEAM 1 (1 No. 254x254x73kgUB) 2023-7459					-7459	
Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148 701	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR					Start page no./Revision 1	
	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Approved by SB	Approved date 19/09/2023	

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Load Combination 1 (shown in proportion)

PlanningApplications.com	Project F	3FAM 1 (1 No. 2	254x254x73ka	UB)	Job no. 2023-7459	
Summer House, Upper Court Road	Calcs for			/	Start page no./	Revision
Woldingham SURREY CR3 7BF	Mr Wisidagan	na 29 Hartfield F	Road, Leatherł	nead, KT22 0AR		2
148 701	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Job no. 202. Start page no./f Approved by SB -123.8 -123.8 B -123.8 B -123.8 N 0 kNm -123.8 kN 0 mm = 123.8 kN = 123.8 kN	Approved date 19/09/2023
kN 123.756		Shear Force Envel	ope			
					A	
-123.756		3	500		-123.8	
A			1		В	
Support conditions						
Support A		Vertically re	estrained			
		Rotationally	/ free			
Support B		Vertically re	estrained			
		Rotationally	/ free			
Applied loading				h		
Beam loads		Permanent		beam × 1		
		Variable ful	I UDL 15 kN/m	1		
I oad combinations						
Load combination 1		Support A		Perman	ent × 1.35	
				Variable	e × 1.50	
				Perman	ent × 1.35	
				Variable	e × 1.50	
		Support B		Perman	ent × 1.35	
				Variable	e × 1.50	
Analysis results						
Maximum moment		M _{max} = 108.	.3 kNm	$M_{min} = 0$	kNm	
Maximum snear		$V_{max} = 123.$	8 KN	$V_{min} = -$	123.8 KN	
Maximum reaction at support A		$R_{A} = 1.2$	3.8 kN	BA min =	123.8 kN	
Unfactored permanent load read	ction at support A	RA Permanent	= 62.5 kN	· · · · ·		
Unfactored variable load reaction	n at support A	R _{A_Variable} = :	26.3 kN			
Maximum reaction at support B		R _{B_max} = 12	3.8 kN	R _{B_min} =	123.8 kN	
Unfactored permanent load read	ction at support E	B R _{B_Permanent} :	= 62.5 kN			
Unfactored variable load reaction	n at support B	R_{B} Variable =	26.3 KN			
Section details		UC 254x25	AV72 (DCA 4)			
Steel grade		S275	4273 (034-1)			
EN 10025-2:2004 - Hot rolled	products of stru	ctural steels				
Nominal thickness of element		t = max(t _f , t	_w) = 14.2 mm			
Nominal yield strength		f _y = 275 N/r	nm²			
Nominal ultimate tensile strengt	h	f _u = 410 N/r	nm ²			
Modulus of elasticity		⊢ = 210000	N/mm ²			

PlanningApplications com	Project	BEAM 1 (1 No. 2	Job no. 2023-7459			
Summer House, Upper Court Road	Calcs for	, , , , , , , , , , , , , , , , , , ,	5	/	Start page no /	Revision
Woldingham SURREY CR3 7BF	Mr Wisidaga	ama 29 Hartfield F	Road, Leatherhe	ead, KT22 0AR		3
148 701	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	SB	19/09/2023	DB	19/09/2023	SB	19/09/2023
	4.2					
	_ ÷			_		
	↑ ↓					
	4. 		8.6			
	5					
	-14.2					
	т	254.6				
		20110		-1		
Partial factors - Section 6.1						
Resistance of cross-sections		γ _{M0} = 1.00				
Resistance of members to insta	bility	$\gamma_{M1} = 1.00$				
Resistance of tensile members	to fracture	γ _{M2} = 1.10				
Lateral restraint						
		Span 1 has	lateral restrain	t at supports only	,	
Effective length factors						
Effective length factor in major a	axis	K _y = 1.000				
Effective length factor in minor a	axis	K _z = 1.000				
Effective length factor for torsion	n	K _{LT.A} = 1.00	0			
		К _{LТ.В} = 1.00	0			
Classification of cross section	ns - Section 5.	.5	/2/61-00	.		
		ε = ν[235 Ν	$/mm^2 / T_y = 0.9$	2		
Internal compression parts su	ubject to bend	ing and compres	ssion - Table 5	.2 (sheet 1 of 3)		
		$\alpha = \min(h)$.3 / 2 + N-↓ / (2 ∨ †	$(t_{t} + r) = (t_{t} + r) / c$	1) = 0 817	
		$a = \min\{1, 7\}$	2 × ε <= 396 × ε	/(13×α-1) (Class 1	
Outstand flanges - Table 5.2 (shoot 2 of 3)	0, tw _0		, (10 11 a. 1)		
Width of section	Sheet 2 01 3)	c = (b - t _w -	2 × r) / 2 = 110	3 mm		
		$c / t_f = 8.4 \times$	ε <= 9 × ε	Class 1		
				_	Sec	tion is class 1
Check shear - Section 6.2.6						
Height of web		h_w = h - 2 ×	t _f = 225.7 mm			
Shear area factor		η = 1.000				
		h _w / t _w < 72	×ε/η			
				Shear buckling	resistance c	an be ignored
Design shear force		$V_{Ed} = max(a)$	abs(V _{max}), abs(\	/ _{min})) = 123.8 kN	· · · · · · · · · · · · · · · · · · ·	^
Shear area - cl 6.2.6(3)	C(0)	$A_v = max(A)$	$-2 \times b \times t_f + (t_v)$	$(+2 \times r) \times t_f, \eta \times$	$n_w \times t_w$) = 256	52 mm²
Design shear resistance - cl 6.2	.6(2)	$V_{c,Rd} = V_{pl,Rd}$	$d = A_v \times (f_y / \sqrt{3})$)/γ _{M0} = 406.8 kN	1	

			Job no.					
PlanningApplications.com	E	BEAM 1 (1 No. 2	254x254x73kgUI	3)	202	3-7459		
Summer House, Upper Court Road Woldingham SURREY CR3 7BF	Calcs for Mr Wisidagan	na 29 Hartfield I	Road, Leatherhe	ad, KT22 0AR	Start page no./F	Revision 4		
support@planningapplications.com 07922 148 701	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Job no. 2023 Start page no./R Approved by SB exceeds design $backling cannol L^2 × G × It / (\pi^2 >buckling cannolLT2] = 0.584/ \bar{\lambda}_{LT^2}) = 0.9818)2], 1) = 0.977mads design ben$	Approved date 19/09/2023		
		PAS	SS - Design she	ar resistance e	xceeds desig	yn shear force		
Check bending moment maio	r (v-v) axis - Se	ction 6.2.5						
Design bending moment	()),	M _{Ed} = max(abs(M _{s1 max}), ab	s(M _{s1 min})) = 108	. 3 kNm			
Design bending resistance mom	ient - eq 6.13	$M_{c,Rd} = M_{pl,R}$	$R_{d} = W_{pl.y} \times f_y / \gamma_M$	₁₀ = 272.8 kNm				
Slenderness ratio for lateral to	orsional bucklin	na						
Correction factor - Table 6.6		k _c = 0.94						
		$C_1 = 1 / k_c^2$	= 1.132					
Curvature factor		g = √[1 - (I _z	/ l _y)] = 0.811					
Poissons ratio		v = 0.3						
Shear modulus		G = E / [2 ×	(1 + v)] = 8076	9 N/mm²				
Unrestrained length		$L = 1.0 \times L_{s}$	₃1 = 3500 mm					
Elastic critical buckling moment		$M_{cr} = C_1 \times T_2$	$\tau^2 \times E \times I_z / (L^2 \times$	g) × $\sqrt{[I_w / I_z + L^2]}$	2 × G × I _t / (π^{2}	$\times E \times I_z$] =		
, , , , , , , , , , , , , , , , , , ,		1350.9 kNn	n	0, 1	Υ.	/-		
Slenderness ratio for lateral tors	ional buckling	$\overline{\lambda}_{LT} = \sqrt{W_{p}}$	$d_{\text{bl.y}} \times f_{\text{y}} / M_{\text{cr}}) = 0.$	449				
Limiting slenderness ratio		$\overline{\lambda}_{LT,0} = 0.4$						
			$\bar{\lambda}_{LT} > \bar{\lambda}_{LT,0} - Lat$	eral torsional b	uckling cann	ot be ignored		
Design resistance for buckling	a - Section 6.3.3	2.1						
Buckling curve - Table 6.5		b						
Imperfection factor - Table 6.3		α _{LT} = 0.34						
Correction factor for rolled section	ons	β = 0.75						
LTB reduction determination fac	tor	$\phi_{LT} = 0.5 \times$	[1 + α _{LT} × (λ _{LT} -	$\overline{\lambda}_{LT,0}$) + $\beta \times \overline{\lambda}_{LT}^{2}$	²] = 0.584			
LTB reduction factor - eq 6.57		, χ _{LT} = min(1	- /[φ _{LT} + √(φ _{LT} ² - [$3 \times \overline{\lambda}_{LT}^{2}$], 1, 1 /	$\bar{\lambda}_{LT}^2$) = 0.981			
Modification factor		f = min(1 -	f = min(1 - 0.5 × (1 - k _c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8) ²], 1) = 0.977					
Modified LTB reduction factor -	eq 6.58	χ _{LT,mod} = mi	$\chi_{\text{LT,mod}} = \min(\chi_{\text{LT}} / \text{f}, 1) = 1.000$					
Design buckling resistance mor	nent - eq 6.55	$M_{b,Rd} = \chi_{LT,r}$	$M_{b,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = 272.8 \text{ kNm}$					
	PASS	Design buckli	Design buckling resistance moment exceeds design bending moment					
Check compression - Section	6.2.4							
Design compression force		N _{Ed} = 300 k	N					
Design resistance of section - e	q 6.10	$N_{c,Rd} = N_{pl,R}$	$A_{d} = A \times f_y / \gamma_{M0} =$	2560.3 kN				
Slenderness ratio for major (v	-v) axis bucklin	a						
Critical buckling length	, ,	$L_{crv} = L_{s1} \times$	K _v = 3500 mm					
Critical buckling force		$N_{cr.v} = \pi^2 \times$	$E_{SEC3} \times I_v / L_{cr.v}^2$	= 19300.2 kN				
Slenderness ratio for buckling -	eq 6.50	$\overline{\lambda}_{v} = \sqrt{[A \times V]}$	$f_v / N_{cr.v}$] = 0.364	Ļ				
Design resistance for buckling	- Section 6.3	1 1	,, , ,					
Buckling curve - Table 6.2	g - Section 0.5.	b.						
Imperfection factor - Table 6.1		$\alpha_{\rm V} = 0.34$						
Buckling reduction determination factor		$\phi_{\rm V} = 0.5 \times [$	$1 + \alpha_{\rm V} \times (\overline{\lambda}_{\rm V} - 0)$	2) + $\bar{\lambda}_{y}^{2}$] = 0.59	4			
Buckling reduction factor - eg 6.	Buckling reduction factor - eg.6.49		$\sqrt{[\phi_v + \sqrt{(\phi_v^2 - \overline{\lambda})^2}]}$	2)]. 1) = 0.940	-			
Design buckling resistance - eq	6.47	$N_{\rm by Rd} = \gamma_{\rm y}$	$\times \mathbf{A} \times \mathbf{f}_{v} / \gamma_{M1} = 2$	406.8 kN				
		PASS - Design	buckling resis	tance exceeds	design comp	pression force		
Slenderness ratio for minor /z	-z) axis hucklin	a	-					
Critical buckling length	_, unio suonini		_{a1} × K _z = 3500 m	ım				
Critical buckling force		$N_{cr.z} = \pi^2 \times$	$E_{SEC3} \times I_z / L_{cr}^2$	= 6611.7 kN				
		01,2 70 7						

	Project				Job no.				
PlanningApplications.com		BEAM 1 (1 No. 2	254x254x73kgU	B)	202	3-7459			
Summer House, Upper Court Road Woldingham SURREY CR3 7BF	Calcs for Mr Wisidaga	ama 29 Hartfield I	Road, Leatherhe	ead, KT22 0AR	Start page no./I	Revision 5			
148 701	Calcs by SB	eet Job no. 2023-743 is for Start page no /Revised Start page no /Revised Ir Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR Start page no /Revised 5 is by Calcs date Checked by Checked date Approved by App 50 $\overline{\lambda}_z = \sqrt{[A \times f_y / N_{er,z}]} = 0.622$ SB 150 $\overline{\lambda}_z = \sqrt{[A \times f_y / N_{er,z}]} = 0.797$ $\chi_z = 0.49$ itor $\phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2] = 0.797$ $\chi_z = \min(1 / [\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)], 1) = 0.772$ N _{b.z.Rd} = $\chi_z \times A \times f_y / \gamma_{M1} = 1976.8 \text{ kN}$ PASS - Design buckling resistance exceeds design compress itari buckling - Section 6.3.1.4 Kr = 1.00 L _{c.r.} = max(L _{i=1} , L _{i=1_seq1}) × Kr = 3500 mm id in z axis z = 0.0 mm id in y axis y ₀ = 0.0 mm is = √[f_0^2 + i_z^2] = 128.3 mm ke N _{ar.r} = 1 / is ² × [G × I + π ² × Esccs × I_w / L _{c.r.} r ²] = 8612.4 kN gr = 1 - (y_0 / i_0)^2 = 1.000 Iing force $\alpha_x = 0.49$ tr = 0.5 × [1 + $\alpha_x \times (\overline{\lambda}_x - 0.2) + \overline{\lambda}_x^2] = 0.733$ $\chi_x = min(N + v_{cr} - \overline{\lambda}_x^2)], 1) = 0.817$ r N _{ar} = min(1 / [($\psi_r + \sqrt{(\psi_r^2 - \overline{\lambda}_x^2)], 1) = 0.817$ N _b N _b N _b N _b N _c N _c N _c N _c N _c N _{c.}	Approved date 19/09/2023						
Slenderness ratio for buckling -	eq 6.50	$\overline{\lambda}_z = [A \times$	fy / Ncr,z] = 0.622	2					
Design resistance for buckling	a - Section 6.3	3.1.1							
Buckling curve - Table 6.2		с							
Imperfection factor - Table 6.1		α _z = 0.49							
Buckling reduction determinatior	factor	$\phi_z = 0.5 \times [$	$1 + \alpha_z \times (\overline{\lambda}_z - 0.$	2) + $\bar{\lambda}_z^2$] = 0.79	7				
Buckling reduction factor - eq 6.4	19	$\chi_z = min(1)$	$/ [\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z)}]$	²)], 1) = 0.772					
Design buckling resistance - eq	6.47	$N_{b,z,Rd} = \chi_z$	$\times \mathbf{A} \times \mathbf{f}_{\mathbf{V}} / \gamma_{M1} = 1$	976.8 kN					
		PASS - Design	buckling resis	stance exceeds	design com	pression force			
Check torsional and torsional	flexural buck	ling - Section 6	314						
Torsional buckling length factor		K _T = 1.00	0.1.4						
Torsional buckling length		$L_{crT} = max($	(Ls1, Ls1 seg1) × K	⊤ = 3500 mm					
Distance from shear centre to ce	entroid in v axis	$v_0 = 0.0 \text{ mm}$	n	,					
Distance from shear centre to ce	entroid in z axis	$z_0 = 0.0 \text{ mm}$	n						
Radius of gyration		$i_0 = \sqrt{[i_v^2 + i_v]}$	_z ²] = 128.3 mm						
Elastic critical torsional buckling	force	N _{cr} _T = 1 / io	-] ² × [G × Ιι + π ² >	K ESEC3 X Iw / Lor T	2] = 8612.4 kM	J			
Torsion factor		$\beta_{T} = 1 - (v_{0})$	$(i_0)^2 = 1.000$,				
Elastic critical torsional-flexural b	ouckling force	P ()*							
N _{cr.TF}	= $N_{cr.v}$ / (2 × β_1	-) × [1 + N _{cr.T} / N _{cr.}	.v - √[(1 - N _{cr.T} / N	$(y_0 / i_0)^2 + 4 \times (y_0 / i_0)^2$) ² × N _{cr.T} / N _{cr.}	_v]] = 8612.4 kN			
Elastic critical buckling force		$N_{cr} = min(N)$	I _{cr,T} , N _{cr,TF}) = 861	2.4 kN	, , ,				
Slenderness ratio for torsional b	uckling - eq 6.	52 $\overline{\lambda}_{T} = \sqrt{ A \times A }$	f _v / N _{cr}] = 0.545						
Design resistance for buckling	a - Section 6.3	1.1							
Buckling curve - Table 6.2	,	С							
Imperfection factor - Table 6.1		α _T = 0.49							
Buckling reduction determination	factor	φ _T = 0.5 × [$φ_{T} = 0.5 \times [1 + α_{T} \times (\overline{\lambda}_{T} - 0.2) + \overline{\lambda}_{T}^{2}] = 0.733$						
Buckling reduction factor - eq 6.4	19	$\chi_{T} = \min(1)$	$\chi_{\rm T} = \min(1 / [\phi_{\rm T} + \sqrt{(\phi_{\rm T}^2 - \bar{\lambda}_{\rm T}^2)}], 1) = 0.817$						
Design buckling resistance - eq	6.47	$N_{b,T,Rd} = \chi_T$	$N_{b,T,Rd} = \gamma_T \times A \times f_V / \gamma_{M1} = 2092.7 \text{ kN}$						
		PASS - Design	buckling resis	stance exceeds	design com	pression force			
Combined bending and axial f	orce - Sectio	n 6.2.9							
Normal force to plastic resistanc	e force ratio	$n = N_{Ed} / N_{I}$	pl,Rd = 0.12						
Web area to gross area ratio		a _w = min((A	$A - 2 \times b \times t_f) / A,$	0.5) = 0.22					
Design plastic moment resistanc	e - eq 6.13	$M_{pl,Rd} = W_{pl}$	$f_{y} \times f_{y} / \gamma_{M0} = 272$	2. 8 kNm					
Reduced plastic moment resista	nce - eq 6.36	$M_{N,Rd} = M_{pl}$	_{Rd} × min((1 - n)	/ (1 - 0.5 × a _w), 1)) = 271.1 kNm	ı			
	PASS	Reduced bendi	ing resistance i	moment exceed	s design ber	nding moment			
Check combined bending and	compressior	- Section 6.3.3							
Equivalent uniform moment facto	ors - Table B.3	M _{hy} = 0 kNr	m						
		M _{sy} = 108 k	Nm						
		$\psi_{y} = 1.000$							
		$\alpha_{hy} = M_{hy} / 1$	M _{sy} = 0.000						
		$C_{my} = 0.95$	+ 0.05 $\times \alpha_{hy}$ = 0	.950					
		M _{hz} = 0 kNr	m						
		$M_{sz} = 0 \text{ kNr}$	m						
		ψz = 1.000							
		$C_{mz} = 0.6 +$	$0.4 \times \psi_z$ = 1.00	0					
		$M_{hLT} = 0 \ kN$	lm						

	Project				loh no			
PlanningApplications.com	Filgeot	BEAM 1 (1 No. 2	254x254x73kgl	JB)	2023	8-7459		
Summer House, Upper Court Road	Calcs for				Start page no./R	evision		
Woldingham SURREY CR3 7BF	Mr Wisidag	gama 29 Hartfield I		6				
support@planningapplications.com 07922 148 701	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	SB	19/09/2023	DB	19/09/2023	SB	19/09/2023		
			· · · ·	•	•	•		
		M _{sLT} = 108	kNm					
		ΨLT = 1.000						
$\alpha_{hLT} = M_{hLT} / M_{sLT} = 0.000$								
		$C_{mLT} = 0.95$	6 + 0.05 $ imes$ α_{hLT}	= 0.950				
Interaction factors k _{ij} for mem	bers suscep	tible to torsional	deformations	- Table B.2				
Characteristic moment resistant	ce	$M_{Rk} = W_{pl.y}$	$M_{Rk} = W_{pl.y} \times f_y = 272.8 \text{ kNm}$					
Characteristic resistance to nor	nal force	$N_{Rk} = A \times f_{y}$	$N_{Rk} = A \times f_y = 2560.3 \text{ kN}$					
Interaction factors		$k_{yy} = C_{my} \times$	$[1 + min(\overline{\lambda}_y - 0)]$	0.2, 0.8) \times N _{Ed} / (χ	_y × N _{Rk} / γ _{M1})] =	0.969		
		k _{zy} = 1 - 0.1	\times min(1, $\overline{\lambda}_z$) ×	NEd / ((CmLT - 0.2	5) × χ_z × N _{Rk} /	γ _{M1}) = 0.987		
Interaction formulae - eq 6.61 &	eq 6.62	$N_{Ed} / (\chi_y \times N_{ed})$	N _{Rk} / γ _{M1}) + k _{yy} >	\times Med / ($\chi_{LT} \times$ Mrk /	/ γ _{M1}) = 0.517			
		$N_{Ed} / (\chi_z \times I)$	N _{Rk} / γ _{M1}) + k _{zy} >	\times M _{Ed} / ($\chi_{LT} \times$ M _{Rk})	/ γ _{M1}) = 0.551			
		PASS - C	ombined ben	ding and compre	ssion checks	are satisfied		
Check vertical deflection - Se	ction 7.2.1							
Consider deflection due to varia	ble loads							
Limiting deflection		$\delta_{\text{lim}} = L_{s1} / 3$	860 = 9.7 mm					
Maximum deflection span 1		δ = max(ab	$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 1.223 \text{ mm}$					
		PAS	S - Maximum	deflection does	not exceed de	eflection limit		

Tekla Tedds	Project Job no. BEAM 2 (1 No. 203x133x25kgUB) Beam & 8mm plate x 2023-7459				-7459	
PlanningApplications.com Summer House, Upper Court Rd Woldingham SURREY CR3 7BF	Calcs for Mr Wisidagan	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0A				evision 1
Woldingham SURREY CR3 7BF Tel:0203 294 9477 Mob:07922 148 701 support@planningapplications.com	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Approved by SB	Approved date 19/09/2023

Tedds calculation version 1.0.04

STEEL MASONRY SUPPORT

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

—100— ▶ = 50 - ▶ = 50 - ▶ = -100-External **∢**-35-**▶**∢--95-► Steel member details UB 203x133x25 Torsion beam User Masonry support plate S275 Steel grade of support plate Design strength of support plate pysb = 275 N/mm² Modulus of elasticity E = 205000 N/mm² $\epsilon = \sqrt{(275 \text{N/mm}^2 / \text{p}_{ysb})} = 1.000$ Constant Length of plate beyond beam I_h = **130** mm Total length of plate I_{plate} = **270** mm Thickness of plate t_{sb} = **8** mm Width of main beam B_{mb} = **133** mm Area of plate $A_{sbu} = t_{sb} \times I_{plate} = 2160.0 \text{ mm}^2$ Distance from weld position to CoG $c_{yysb} = I_h / 2 - (I_{plate} - I_h) / 2 = -5 mm$ Supported materials detail $\rho_{m,mb}$ = 10.0 kN/m³ Density of masonry on main beam Width of masonry on main beam b_{mmb} = **100** mm h_{mmb} = **300** mm Height of masonry on main beam Eccentricity of main beam material e_{mb} = **50** mm Add dead force main beam (not from masonry) PGaddmb = 0.0 kN/m Add live force main beam (not from masonry) $P_{Qaddmb} = 0.0 \text{ kN/m}$ $\rho_{m,sb}$ = 10.0 kN/m³ Density of masonry on support beam b_{msb} = **100** mm Width of masonry on support beam Height of masonry on support beam h_{msb} = **500** mm

	BEAM 2 (1 N	No. 203x133x2	5kgUB) Beam	& 8mm plate x	202	23-7459		
PlanningApplications.com	Calcs for				Start page no./	Revision		
Summer House, Upper Court Rd Woldingham SURREY CB3 7BE	Mr Wisidagam	a 29 Hartfield I	Road, Leather	head, KT22 0AR		2		
el:0203 294 9477 Mob:07922 148 701 support@planningapplications.com	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Job no. 202 Start page no. Approved by SB 43 mm $t_{sb} / 2 - y_{e,all})^2$ $ddsb \times \gamma fQ = 0.$ gth exceeds o less than = 0.5 kN/m $E_{S5950} \times I_{eff_de}$ is within sp th the prop 1.4) = 2.2 kN	Approved date 19/09/2023		
Add dead force support beam (not from masonry) $P_{Gaddsb} = 0$.	0 kN/m					
Add live force support beam (no	ot from masonry)	$P_{Qaddsb} = 0.$	0 kN/m					
Geometry								
Cavity width		c = 100 mn	n					
Supported width of masonry		$d_m = I_h + e_m$	nb - c = 80 mm					
Biaxial stress effects in the p	late (SCI-P-110)							
Maximum overall bending mom	ent	M _x = 32.6 k	Nm					
Dist to NA combined section (C	oG torsion beam)	$y_{e,all} = (D_{mb})$	+ t_{sb}) × A_{sbu} / ($2 \times (A_{mb} + A_{sbu})) =$	43 mm			
Second moment of area of com	bined section	$I_{xx,all} = (I_{xxmb})$	$h + A_{mb} \times y_{e,all}^2)$	+ $A_{sbu} \times (D_{mb} / 2 +$	t_{sb} / 2 - $y_{e,all}$) ²	= 3778 cm ⁴		
Elastic section modulus of com	bined section	$Z_{xx,all} = I_{xx,all}$	$(D_{mb} / 2 + t_{sb})$	- y _{e,all}) = 563.66 c	m ³			
Section modulus of plate		$Z_{xx,plate} = 1n$	$n \times t_{sb}^2 / (6 \times 1)$	m) = 10.67 cm ³ /m				
Eccentricity of support beam ma	asonry	e ₁ = 95 mm	ו					
Force of masonry on support pl	ate	$P_1 = (b_{msb} >$	$ h_{msb} \times \rho_{m,sb} + $	P_{Gaddsb}) × γ_{fG} + P_Q	$_{addsb} \times \gamma_{fQ} = 0.$	7 kN/m		
Bending at heel		$M_{x,plate} = P_1 \times e_1 = 0.1 \text{ kNm/m}$						
Moment capacity of plate		$M_c = 1.2 \times 10^{-1}$	$Z_{x,plate} \times p_{ysb} =$	3.5 kNm/m				
		- 14 / 7		SS - Design stren	igth exceeds	stress at neel		
	all bending	$\sigma_1 = M_x / Z_y$	$x_{x,all} = 57.9 \text{ N/m}$					
Constant relating to Von Mises curve		$c_{fp} = (4 \times p)$	$y_{sb^2} - 3 \times \sigma_{1^2})^{0.3}$	= 540.8 N/mm ²				
I ransverse bending stress ratio	limit	$\alpha_{\rm ts} = (C_{\rm fp}^2 -$	σ_1^2) / (2 × C _{fp} ×	(p _{ysb}) = 0.972				
I ransverse bending stress ratio)	$\alpha_{\rm ls} = M_{\rm x, plate}$	$M_{\rm c} = 0.019$		la lass dhan	- !!		
		PA33 -	i ransverse be	ending stress rat	io less than	allowable limit		
Deflection at toe								
Unfactored force on support an	gle	$P_{1SLS} = b_{msl}$	$h_{msb} \times h_{msb} \times \rho_{m,sb}$	+ P _{Gaddsb} + P _{Qaddsb}	= 0.5 kN/m			
Distance from weld to load posi	tion	a _m = e ₁ = 9	5 mm					
Length of load resultant to edge	e of plate	$b_m = l_h - e_1$	= 35 mm					
Effective second moment of ine	rtio	$a_1 - a_m / (a_r$	n + Dm) - 0.73 / 12 - 42667 r	I mm ⁴ /m				
Deflection at toe	lla	$\delta = (a)^2 \times (3)^2$	(12 - 42007)	oro × (a., + b.,) ³) /	(E05050 X L.#. d.	a = 0.03 mm		
		$\delta = (a) \times (a)$	mm	SLS ~ (am ' Dm)) /	(⊏S5950 ∧ Teπ_de	a) – 0.03 mm		
Denection limit		0 _{lim} – 1.00 l	F	PASS - Deflection	is within sn	ecified criteria		
					10 minin op			
weld details - assume a full le	the contro of the	torsion boam	acts as a prop	oped cantilever w	ith the prop	at the weld		
Leg length of weld	the centre of the	Sweld = 6 mr	n					
Throat size of weld		$a_{wold} = 1/\sqrt{3}$	(2) \times Swold = 4 2	mm				
Shear force at weld position		$R_{\Lambda} = P_{\Lambda} \times n$	-, ∧ Sweiu - -,∠ naX((1 + (3 ∨ 4	 ∋1) / (2 × B _m / 2))	(1.4) = 2.2 kN	/m		
Maximum possible force in plate	<u>ə</u>	$R_{p} = (I_{p} + B)$	$(1 + (0) \times (0))$	= 579.0 kN	····) _·_ kit	,		
Longitudinal shear between bea	am and plate	$R_{1} = 2 \times R_{2}$	/1 = 330.9 kN	l/m				
Horizontal shear between beam	and plate	$R_{h} = P_{1} \times P_{2}$	7 = 000.3 Km	(1) = 9.5 kN/m				
Resultant weld force		$R_{weld} = (R_{A}^{2})^{2}$	$r^{2} + R_{1}^{2} + R_{5}^{2}^{10.5}$	= 0.331 kN/mm				
Strength of weld (Table 37)		p _{weld} = 220 .	0 N/mm ²					
Capacity of full length weld		p _{c,weld} = a _{we}	$ld \times p_{weld} = 0.93$	33 kN/mm				
		I	PASS - Capac	ity of weld excee	eds resultant	force on weld		
Torsional loading ULS			•					
Loading of support beam maso	nrv	W1015 = (hm	$sb \times b_{msh} \times 0m e^{-1}$	b + PGaddsh) × VfG +	Poaddsh X Vro =	• 0.70 kN/m		
Loading of main beam masonry	, ,	$W_{2ULS} = (h_m)$	$mb \times bmmb \times 0m$	mb + PGaddmb) × VfG	+ POaddmb × Vf	o = 0.42 kN/m		
		(Pill,	5444410				

	Project				Job no.			
Tedds	BEAM 2 (1	No. 203x133x2	5kgUB) Beam	& 8mm plate x	202	3-7459		
PlanningApplications.com Summer House, Upper Court Rd Woldingham SURPEY CP3 785	Calcs for Mr Wisidagar	na 29 Hartfield I	Road, Leather	head, KT22 0AR	Start page no./	Revision 3		
Tel:0203 294 9477 Mob:07922 148 701 support@planningapplications.com	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	ppendix B ca (1 / L - 2) 20 Start page no Approved by SB b = 0.50 kN/m dmb = 0.30 kN $3ULS \times e_{3mb}) = 0$ Tedds calcu	Approved date 19/09/2023		
Self weight of support beam		W _{3ULS} = A _{sb}	$_{\text{J}} \times \rho_{\text{sb}} \times \gamma_{\text{fG}}$ = ().24 kN/m				
Torsional loading SLS								
Loading of support beam masor	nry	$w_{1SLS} = h_{msl}$	$b_{\text{b}} imes b_{\text{msb}} imes \rho_{\text{m,sb}}$	+ P _{Gaddsb} + P _{Qaddsb}	= 0.50 kN/m			
Loading of main beam masonry		$w_{2SLS} = h_{mm}$	$b_{b} \times b_{mmb} \times \rho_{m,n}$	$_{nb} + P_{Gaddmb} + P_{Qadd}$	_{imb} = 0.30 kN/	m		
Self weight of support beam		$W_{3SLS} = A_{sbu}$	$\mu \times \rho_{\text{sb}}$ = 0.17 k	kN/m				
Eccentricities								
Distance to shear centre of mair	n beam	e _{0mb} = 0 mr	n					
Eccentricity of support beam ma	asonry	$e_{1mb} = (B_{mb})$	+ b _{msb}) / 2 + c	- e _{mb} = 167 mm				
Eccentricity of main beam maso	onry	$e_{2mb} = (B_{mb})$	- b _{mmb}) / 2 - e _r	_{mb} = -33 mm				
Eccentricity of support beam		$e_{3mb} = B_{mb}$	/ 2 + c _{yysb} = 62	mm				
Torsional effects								
Applied torque (ULS)		T _{qULS} = abs	(W1ULS × e1mb +	W2ULS × e2mb + W3	ULS × e _{3mb}) = ().12 kNm/m		
Total torque (ULS)		$T_q = T_{qULS}$	<l 0.41="" =="" knm<="" td=""><td>n</td><td></td><td></td></l>	n				
Applied torque (SLS)		T _{qSLS} = abs	$(W_{1SLS} \times e_{1mb} +$	$W_{2SLS} \times e_{2mb} + W_{3S}$	$s_{LS} \times e_{3mb}) = 0$.08 kNm/m		
Total torque (SLS)		$T_{qu} = T_{qSLS}$	× L = 0.29 kNi	m				
STEEL BEAM TORSION DESI	GN							
In accordance with BS5950-1	2000 incorpora	ting Corrigend	um No.1					
					Tedds calcula	ation version 2.0.02		
Section details								
Section type		UB 203x13	3x25					
Steel grade		S275						
Design stength		$p_{yw} = p_y = 2$	75 N/mm²					
Constant		ε = √(275 N	l/mm² / p _y) = 1	.000				
Geometry - Beam unrestraine	d against latera	ll-torsional buc	kling betwee	n supports.				
Effective span		L = 3500 m	m					
Length of segment for LT buckli	ng	L _{LT} = 2550	mm					
Compression flanges laterally re	estrained							
Both flanges free to rotate on pl	an							
Effective length for L1 buckling		$L_{E_{LT}} = L_{LT}$	$L_{E_{LT}} = L_{LT} \times 1.0 = 2550 \text{ mm}$					
Loading - Torsional loading c	omprises only	full-length unif	ormly distrib	uted load(s)				
Internal forces & moments on	member under	r factored loadi	ng for uls de	sign				
Applied shear force		F _{vy} = 43.0 k	KN					
Maximum bending moment		$M_{LT} = M_x =$	32.62 kNm					
Applied torque		T _q = 0.41 k	Nm					
Minor axis bending moment		$M_y = 0 \text{ kNm}$	1					
Compression force		$F_c = 0 \text{ KN}$						
Equivalent uniform moment fa	actors	m - 1 000						
)	L⊤ - 1.000	,					
Torsional deflection parameter Beam is torsion fixed and warping	e rs na free at each e	end. (as defined	in SCI-P-057	section 2.1.6) - Ap	pendix B cas	e 4		
Dist along the beam for first der	ivative of twist	$z_1 = 0 \text{ mm}$, _ , , , , , , , , , ,		-		
Dist along the beam for second	derivative of twis	st $z_2 =$	L / 2 = 1750 m	ım				
First derivative of angle of twist		φ' ₁ =	$T_q / (G \times J) \times$	a / L × [L² / (2 × a)	× (1 / L - 2 ×	z ₁ / L ²) +		
_		sinh(z₁ / a)	- tanh(L / (2 ×	a)) $\times \cosh(z_1 / a)$]	× 1 rads = 1 .	79×10 -2 rads/m		

두 Tekla	Project	No. 203x133x28	skallB) Beam &	8mm plate v	Job no.	3 7450	
PlanningApplications.com	DEAW 2 (1	NO. 203713372	bkgob) beam &		Start page pg /E	Povision	
Summer House, Upper Court Rd	Mr Wisidaga	ma 29 Hartfield I	Road, Leatherhe	ad, KT22 0AR	Start page 10./P	4	
Woldingham SURREY CR3 7BF	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
support@planningapplications.com	SB	19/09/2023	DB	19/09/2023	SB	19/09/2023	
Third derivative of angle of twist		φ''' ₁ =	$= T_q / (G \times J \times a^2)$) \times a/L \times [sinh(z ₁	/ a) - tanh(L /	(2 × a)) ×	
		cosh(z₁ / a))] × 1 rads = -2.0	1×10 ⁻² rads/m ³	a	2 (. 2)	
Angle of twist		$\phi_2 = 1$	$T_q \times a / (G \times J) \times$	a / L × [L² / (2 ×	a^{2}) × (z_{2} / L -	$z_2^2 / L^2 +$	
		cosh(z ₂ / a)) - tanh(L / (2 × a	$()) \times \sinh(z_2 / a) -$	1] × 1 rads =	0.019 rads	
Second derivative of angle of tw	ist	$\phi^{\prime\prime}{}_2 =$	$I_q / (G \times J \times a)$	\times a / L \times [cosh(z ₂	2 / a) - tanh(L)	/ (2 × a)) ×	
		sinn(z ₂ / a)	$-1] \times 1$ rads = -	1.48×10 ⁻² rads/m	2		
Design parameters							
Total angle of twist		$\phi = abs(\phi_2)$	= 0.019 rads				
First derivative of ϕ		$\phi' = abs(\phi'_1)$) = 1.79 ×10 ⁻² rad	ls/m			
Second derivative of ϕ		φ" = abs(φ"	₂) = 1.48×10⁻² ra	ds/m²			
Third derivative of ϕ		φ''' = abs(φ'	" ₁) = 2.01×10 ⁻² ra	ads/m³			
Section classification							
		b / T = 8.5					
		d / t = 30.2					
		$r_{1s} = min(1)$	$.0, \max(-1.0, F_c)$	/ (a × t × p _{yw}))) =	0.000		
		$r_{2s} = F_c / (A)$	_g × p _{yw}) = 0.000	Saati	on alaasifiaa	tion io plaatia	
.				Section	UII CIASSIIICA	lion is plastic	
Shear capacity (parallel to y-a	xis)	F = 43.0 J	- N I				
Design shear resistance (CL 4.2	2)	$F_{vy} = 43.0 r$	$n \vee A = 101 c$				
Design shear resistance (Cl. 4.2	.3)	F vy - 0.0 ×	$p_y \times A_{vy} - 191.$			Pass - Shear	
Moment conseity (x exis)							
Design bending moment		M. = 32.6 k	Nm				
Moment capacity		$M_{x} = p_{y} \times$	S _× = 70.9 kNm				
Moment capacity low shear (Cl.	4.2.5.1)	$M_{ex} = \min(p_{y} \times S_{x} + 1.2 \times p_{y} \times 7_{x}) = 70.9 \text{ kNm}$					
		Pass - Moment capacity exceeds design bending moment					
Lateral torsional buckling					-	-	
Effective length for lateral torsion	nal buckling	LE LT = 255	0 mm				
Slenderness ratio	U	$\lambda = L_{E LT} / r$	v =82				
Buckling parameter		u = 0.877					
Flange ratio		η = 0.5					
Torsional index		x = 25.6					
Slenderness factor		v = 1 / (1 +	$0.05\times(\lambda \ / \ x)^2)^{0.2}$	²⁵ = 0.90			
Ratio - cl 4.3.6.9		$\beta_w = 1.0 = 2$	1.000				
Equvalent slenderness – cl 4.3.6	6.7	λ_{LT} = u \times v	$\times \lambda \times \sqrt{(\beta_w)} = 65$				
Limiting slendernes – Annex B2	.2	λ_{L0} = 0.4 \times	√(π²× E _{S5950} / p _y)	= 34			
Euler stress		$p_E = \pi^2 \times E_s$	s5950 / λ _{LT} ² = 479	N/mm ²			
Perry factor		η∟⊤ = max(7	$7.0 imes$ (λ_{LT} - λ_{L0}) /	1000, 0) = 0.21	5		
		$\phi_{LT} = (p_y + q_y)$	(η _{LT} + 1) × p _E) / 2	2 = 428574344.3	89		
Bending strength		$p_b = p_E \times p_y$,/(φ _{LT} + √(φ _{LT} ² -	$p_{E} \times p_{y}$)) = 201 N/	/mm²		
Buckling resistance moment		$M_{b} = p_{b} \times S$	_x = 51.8 kNm				
Max moment governing buckling	resistance	M _{LT} = 32.6	ĸNm				
Equiv uniform moment factor for	LIB	$m_{LT} = 1.00$	51 8 kNm				

PlanningApplications.com Summer House, Upper Court Rd Woldingham SURREY CR3 7BF Tel:0203 294 9477 Mob:07922 148 701 support@planningapplications.com	Project BEAM 2 (1 No. 203x133x25kgUB) Beam & 8mm plate x			Job no. 2023-7459		
	Calcs for Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 0AR				Start page no./Revision 5	
	Calcs by SB	Calcs date 19/09/2023	Checked by DB	Checked date 19/09/2023	Approved by SB	Approved date 19/09/2023

Pass - la	t. tors.	buckling
-----------	----------	----------

Buckling under combined bending & torsion -SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member. Span factor L / a = 3.09 Angle of twist **φ** = **0.019** rads Second derivative of ϕ **φ'' = 14.8×10⁻³** rads/m² Induced minor axis moment $M_{yt} = M_x \times \phi / 1 \text{ rad} = 0.63 \text{ kNm}$ Normal stress at flange tip due to Myt $\sigma_{byt} = M_{yt} / Z_y = 14 \text{ N/mm}^2$ Normal stress at flange tip due to warping σ_w = $E_{\text{S5950}} \times W_{n0} \times \phi''$ / 1 rad = 20 N/mm^2 Interaction index $i_b = M_x \times m_{LT} / M_b + (\sigma_{byt} + \sigma_w) / p_y \times (1 + 0.5 \times M_x \times m_{LT} / M_b) = 0.79$ Pass - Combined bending and torsion check satisfied

Local capacity under combined bending & torsion

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max. direct stress due to M _x	$\sigma_{bx} = M_x / Z_x = 142 \text{ N/mm}^2$
Combined stress - eqn 2.22	σ_{bx} + σ_{byt} + σ_w = 175 N/mm ²
Design strength	p _y = 275 N/mm ²

Pass - Local capacity

Combined shear stresses - SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum shear stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max shear stresses due to bending in web	$\tau_{bw} = F_{vy} \times Q_w / (I_x \times t) = 42 \text{ N/mm}^2$
Max shear stresses due to bending in flange	τ_{bf} = F _{vy} × Q _f / (I _x × T) = 12 N/mm ²
Max shear stresses due to torsion in web	$\tau_{tw} = abs(G \times t \times \phi' \text{ / 1rad}) = 8 \text{ N/mm}^2$
Max shear stresses due to torsion in flange	τ_{tf} = abs(G × T × ϕ ' / 1 rad) = 11 N/mm ²
Max shear stresses due to warping in flange	τ_{wf} = abs(-E_{S5950} \times $S_{w1} \times \phi^{\prime\prime\prime}$ / 1 rad / T) = 1 N/mm^2
Amp shear stress torsion & warping in web	τ_{vtw} = $\tau_{tw} \times$ (1 + 0.5 \times $M_x \times$ m_{LT} / $M_b)$ = 11 N/mm^2
Amp shear stress torsion & warping in flange	τ_{vtf} = (τ_{tf} + τ_{wf}) × (1 + 0.5 × M _x × m _{LT} / M _b) = 16 N/mm ²

Combined shear stresses due to bending, torsion & warping:

Twist check

Total applied torque (unfactored)	T _{qu} = 0.29 kNm
Maximum twist under sls loading	$\phi_{sis} = \phi \times T_{qu} / T_q = 0.79 \text{ deg}$
Twist limit	φ _{lim} = 2.50 deg

Pass - Twist

Deflection

Maximum y-axis deflection	$\delta_{y_max} = 0.5 \text{ mm}$
Deflection limit - cl. 2.5.2	$\delta_{\text{lim}} = \text{min}(L/k_{\delta}, \delta_{\text{lim}_abs}) = 9.7 \text{ mm}$

Pass - Deflection within specified limit

Notes:

DANGER ELECTRICITY service into existing buildings. Care must be taken when any excavation is taking place near these positions. Confirm position of electricity cables with relevant power company before commencing on site, positions are to be marked on site and also on plans once confirmation has been received

DANGER GAS service into existing buildings. Care must be taken when any excavation is taking place near these positions. Confirm position of gas supply pipe with National Grid (0800 111 999) before commencing on site, positions are to be marked on site and also on plans once confirmation has been received.

DANGER WATER supply to be located and isolated prior to removal of any pipework, water supply pipe to be adequately protected at all time. If advice is required contact relevant water authority.

DANGER Electrical safety, all electrical required to meet the requirements of Part P (Electrical Safety) must be designed, installed, inspected and tested by a person competent to do so. Prior to completion the Council should be satisfied that Part P has been complied with. This will require an appropriate BS 7671:2008+A3:2015

Requirements for Electrical Installations. IET Wiring Regulations electrical installation certificate to be issued for the work by a person competent to do so. The drawings are the copyright of CK Architectural

The drawings must not be scaled from. The contractor should take and verify all dimensions on site before proceeding with any works. All dimensions shown on the drawings are for Planning purposes only.

All dimensions must be checked onsite prior to works commencing. variations in squareness, depth of plaster etc., must be checked for.

Where new walls are shown aligned with existing walls, this must be checked by the physical removal of brickwork and or plaster to establish the actual position of the wall being attached to.

Site to be used only for demolition / construction of the proposed works, which is to be protected at all times along with adjacent properties, not forming par of the works.

Care must be taken at all times to ensure that any works on the supply of all services into / from the property (i.e. electricity, gas, water, KCOM, BT, foulwater and surfacewater drainage) does not ,at any time interfere with the supply of services into / from adjacent properties, is not affected, if this proves to be the case, then the contractor is to fully advise properties to be affected as soon as possible and is to negotiate with adjacent properties regarding any appropriate action that may be required.

Prevent smoke, dust, fumes, spillage and other harmful activities where possible. No fires to be allowed on site at any time and noise levels to be kept to a minimum and complying with BS 5228-1:2009+A1:2014 & BS 5228-2:2009+A1:2014 'Code of practice for noise and vibration control on construction and open sites.'. Remember that adjacent properties are occupied and comply with all reasonable requests from the general public / neighbors regarding the use of power tools etc.

All positions of drainage runs and types of drainage indicated on drawings are provisional only, contracto to check invert and position of all drainage systems to ensure adequate fall & to ensure Building Control Officer is satisfied with site inverts before excavation of drainage runs.

All works are to be carried out with the relevant current British Standard Codes of Practice and Building Research Digest Papers, and to be to the approval of the local Authority and all Statutory Undertakings. All materials shall be suitable for the purpose intended and shall be used strictly in

accordance with the manufacturer's recommendations. All necessary calculations are to be submitted to the Local Authority for approval prior to the commencement of

work on site. Robust details shall be adopted to prevent cold bridging, air leakage etc., continuity of insulation shall be provided at lintols, floors and all roof and wall junctions by the provision of ventilation trays. All joists are to be fixed galvanised joist hangers. All wall and roof insulation shall be continuous. It is the owners responsibility to ensure that the property and site is free from any onerous or unusual restrictions, covenants or easements.

Attention is drawn to the Party Wall Act 1996. The client or owner must give notice in writing to neighbours of the intended building operation and excavations and receive approval of same.

Attention is drawn to the client with regard to the CDM 2015 regulations. These drawings and specification are intended for Planning & Building Regulation purposes only; the scope of this does not go any further. It is the duty of the client under the regulations to appoint a 'Principal Contractor'. There is no obligation for the client to appoint a 'Principal Designer'. The 'Principal Contractor' will then take on the role of 'Principal Designer' for purposes of the 'pre construction' and 'construction' phases of the project under the CDM 2015 regulations when it gets under way; in order that a Health & Safety File and construction plan, is provided for the HSE; in order to reduce risks through

2/2/2		DPM, DPC, VCL, FLASHING STRUCTURAL BEAMS DEMOLITION AREAS	6
DATE		NOTES	BY
07/08/23	First Draft Fo	or Client Approval	1R

1.5

1A. Traditional Strip - Cavity Wall

600mm wide x 225mm thick concrete strip foundations 900mm below ground or at depth agreed with building inspector or to structural engineer's design to suit ground conditions including adjacent trees and hedges. Concrete GEN 1 ready mixed consistency class S3/. Sulphate resistant cement to be used if required by ground conditions. Foundations to be below the invert

level of any drains within 1m. Stepped foundation to Building Regulations A1/2.2A. Cavity Wall - Below dpc level - Traditional Strip

ZA. Cavity Wall - Below upc level - Traditional Still

100mm dense concrete blockwork, minimum 2.8N/mm2 to BS EN 771-3, cavity filled with Concrete GEN 1 ready mixed consistency class S3/S4 to conform to BS EN 206 and BS 8500 upto 225mm below dpc level, 100mm dense concrete blockwork minimum 2.8N/mm2 to BS EN 771-3.

Minimum 3 courses of class B engineering brickwork below dpc level to external skin. Blocks laid in 1:0.5:4-4.5 cement - lime - sand mortar to BS EN 998-3 designation ii.

4Aii. Cavity Wall - facing brickwork - full fill

Maximum U value 0.18 W/m²K.

103mm facing brickwork to BS EN 771-1, minimum 5.0N/mm², F1, overall 100mm cavity, with 90mm insulation slab with a thermal conductivity of 0.021W/mK and 10mm residual cavity, 100mm medium density concrete blockwork 0.15Kg/m³ minimum 3.6N/mm², 12.5mm plasterboard on dabs, 3mm skim.

Walls to be built with 1:1:5-6 cement - lime - sand mortar to BS EN 998-3 designation iii.

Around openings install cavity closer to achieve a maximum u value of 0.45W/m2 K. Vertical twist type wall ties 750mm horizontal spacing and the maximum vertical spacing is 450mm. Set each wall tie a minimum of 50mm into both masonry leaves with a slight 'outward' fall, change the wall tie pattern around openings such as windows, doors, roof verges and movement joints reducing the vertical spacing is reduced to a maximum 300mm and should be within 225mm of the opening. Cavity wall ties should be stainless steel complying with BS EN 845-1.

5B. Floor Construction Ground (Concrete)

Maximum U value 0.18 W/(m2K).

Solid ground floor to consist of 150mm consolidated well-rammed hardcore. Blinded with 50mm sand blinding. Provide 100mm ST2 or Gen2 ground bearing slab. 1200mm gauge polythene DPM. DPM to be lapped in with DPC in walls. Floor to be insulated over slab and DPM with rigid thermoset insulation with glass tissue facing and thermal conductivity of 0.018 W/mK. Insulation thickness determined on P/A ratio. 25mm insulation to continue around floor perimeters to avoid thermal bridging. A VCL should be laid over the insulation boards and turned up 100mm at room perimeters behind the skirting, all joints to be lapped 150mm and sealed. Finish with 65mm sand/cement finishing screed with light mesh reinforcement.

Where drain runs pass under new floor, provide A142 mesh 1.0m wide and min 50mm above base of sub floor over length of drain.

6G Roof Construction (Flat Warm Deck)

Minimum U-Value of 0.15W/m2k (imposed load max 1.0 kN/m² - dead load max 0.75 kN/m²)

Construction to be in accordance with Building Regulations Approved documents Parts B, L1 & E. GRP flat roof finish providing AA fire rating for surface spread of flame with a current BBA or WIMLAS Certificate and laid to specialist specification. Roof finishes within 6m of boundary to achieve a class Broof t4 fire performance rating. Rigid thermoset polyisocyanurate core [PIR] insulation board thermal conductivity 0.022 W/mK on vapour control layer and 18mm moisture resistant ply sheeting. 50mm treated s/w timber firings to create a min 1 in 80 crossfall, on sw flat roof joist. Underdraw at ceiling level with 12.5mm wallboard and min 3mm thistle multi-finish plaster skim. Provide restraint to flat roof by fixing of 30 x 5 x 1000mm ms galvanised lateral restraint straps at maximum 2000mm centres fixed to 100 x 50mm wall plates and anchored to wall.

6M General Roofing Notes

Install all leadwork to roofs etc, such as Code 4 lead flashing's soakers, drips, trims, lead rolls, and upstands etc in strict accordance with the recommendations and guidelines of the Lead Sheet Association, and in accordance with BS EN 12588:2006. Lead and lead alloys. Rolled lead sheet for building purposes. Ensure natural cross ventilation is provided to the loft space by means of proprietary ridge ventilators and over fascia rafter tray eaves ventilators. Ventilation to be equivalent or at least equal to a continuous strip 25mm wide in two opposite sides to promote cross-ventilation. Mono pitched roofs to have ridge/high level ventilation equivalent to a 5mm gap via proprietary tile vents spaced in accordance with manufacturer's details. **6N. Rainwater fittings**

100mm half round section UPVC gutter with 68mm dia UPVC fall pipe. Fall pipes to drain directly in to trapped guleys on combined systems.

8A. External Doors & Windows / Glazing

Details and installation to be in accordance with industry standard codes of practice and Building Regulations Approved Documents Parts F, L1a & L1b and K where applicable. All to achieve a min U-Value of 1.4W/m2K to ensure an Energy Rating of Band C or better. New and replacement windows & doors to be of thermally broken Upvc or timber framed construction, with

Hermetically sealed double glazed units with min 16mm argon fill air gap between panes and soft coat low-E glass. Airgap between panes to be min 16mm, with Inside pane having Low-E soft coat coating. To be installed with a max 10mm mastic sealed joint to the perimeter of the frame. All gaps / voids to the perimeter of the frame / masons opening, to be fully filled with expanding insulation foam. The door and window openings should be limited to 25% of the extension floor area plus the area of any existing openings covered by the extension. All windows to be fitted with limit stays of 100mm, but to also have a manual override for possible means of escape. Multi point Locking mechanisms to be included on all opening lights and to have a night latch option to open 10mm. Windows at ground floor level or those easily accessible above ground floor level shall be made secure to standards independently certified as set out in BS7950 'Windows for enhanced Security' with all incorporated glazing being 6.4mm laminated safety glass.

9A Ventilation Guide (Habitable Rooms)

Background ventilation - Controllable background ventilation via trickle vents to BS EN 13141-1:2004

Habitable rooms 8000mm2 [10000mm2 for single storey dwellings]. The minimum number of background ventilators in the dwellings habitable rooms should be 4 in a one bedroom dwelling and 5 win a dwelling with 2 or more bedrooms. In dwellings with more than 1 exposed façade, the area of ventilators should be similar on each façade. In areas of sustained loud noise attenuating

background ventilators to be used. Purge ventilation - New windows/rooflights to have openable area in excess of 1/20th of their floor area, if the window opens more than 30° or 1/10th of their floor area if the window opens less than 30°

Internal doors should be provided with a 10mm gap below the door to aid air circulation.

Ventilation provision to be in accordance with the Domestic Ventilation Compliance Guide

Purge ventilation to be provided for each habitable room giving a minimum of 4 air changes per hour. For windows with an opening angle of 15 to 30 degrees the minimum area of openings to be minimum of 1/10 of the floor area, for windows with an opening angle of 30 degrees or more the minimum area of openings to be minimum of 1/20 of the floor area.

9E. Heating (Extension)

Extend all heating and hot water services from existing and provide new TVRs to radiators. Heating system to be designed, installed, tested and fully certified by a GAS SAFE registered specialist. All work to be in accordance with the Local Water Authorities by laws, the Gas Safety (Installation and Use) Regulations 1998 and IEE Regulations

9G. Electrical installation (General)

All electrical work required to meet the requirements of Part P (electrical safety) must be designed, installed, inspected and tested by a competent person registered under a competent person self certification scheme such as BRE certification Ltd, BSI, NICEIC Certification Services or Zurich Ltd.

An Electrical Installation Certificate is to be issued for the work by a person competent to do so. A copy of a certificate will be given to Building Control on completion

9K Lighting (Internal)

Install low energy light fittings that only take lamps having a luminous efficiency greater than 75 lumens per circuit watt and a total output greater than 400 lamp lumens. Not less than three energy efficient light fittings per four of all the light fittings in the main dwelling spaces to comply with Part L of the current Building Regulations and the Domestic Building Services Compliance Guide. **10A. [2] Smoke Detection (extensions and material alterations)**

A fire detection and alarm system should be installed where a new habitable room is provided above or below the ground storey or a new habitable room is provided at the ground storey, without a final exit. Mains operated linked smoke alarm and detection system should be provided in the circulation spaces of the dwelling. The code of practice for the design, installation, commissioning, and maintenance of voice alarm systems to at least a Grade D category LD3 standard and to be mains powered with battery back up. Smoke alarms should be sited so that there is a smoke alarm in the circulation space on all levels / storeys and within 7.5m of the door to every habitable room. If ceiling mounted they should be 300mm from the walls and light fittings. Where the kitchen area is not separated from the stairway or circulation space by a door, there should be an interlinked heat detector installed within the kitchen.

11A. DPM / DPC / Radon

Horizontal damp proof courses to be built into external walls, minimum 150 mm above finished ground level and at reveals to doors and windows. Provide horizontal strip polymer (hyload) damp proof course to both internal and external skins minimum 150mm above external ground level. New DPC to be made continuous with existing DPC's and with floor DPM. Vertical DPC to be installed at all reveals where cavity is closed. DPC to comply to BS EN 13984:2013.

Where development is within a Radon zone protection measures are required to BS 8485:2015. Where radon is found at low levels a suitable 1200 gauge DPC & DPM is to be installed and should be continuous across the cavity. Where the radon levels are high, a suitable dpm is to be provided and a sump may have to be installed with ducting to outside of the building foot print. **11C. Existing Structure**

Existing structure including foundations, beams, walls and lintels carrying new and altered loads are to be exposed and checked for adequacy prior to commencement of work and as required by the Building Control Officer

11L. Steel Min 215 end bearing to steelwork, block strength to be checked and upgraded where less than 4.1n/mm². Steel beam and padstones to structural engineer's details. All beams boxed out with 12.5mm fireline board and skim finished to give 30 minutes fire rating. Min 2.0m clearance to u/side of plasterboard.

PROJECT TITLE Proposed Rear Extension	CLIENT Mr Wisidagama 29 Hartfield Road, Leatherhead, KT22 OAR			
DRAWING STAGE	SCALE	СНК	DRAWN BY	
Building Regulations Client Check	Varies @ A1		J.Ram	
SHEET TITLE	PROJECT NUMBER	STAGE	REV	SHT
Plans as existing & propsoed	KT22-3728	REG	B	001