Calcs for \quad Date

Rafter Design to BS 5268-2 and BS 5268-7.5

Rafter details

Timber strength class	C24	$\stackrel{\text { b }}{\stackrel{\text { d }}{ }}$
Rafter width	$\mathrm{b}=50 \mathrm{~mm}$	
Rafter depth	$\mathrm{h}=225 \mathrm{~mm}$	h
Rafter spacing	$\mathrm{s}=450 \mathrm{~mm}$	
Rafter slope	$\alpha=40$ degrees	
Clear span on slope	$\mathrm{L}_{\mathrm{c}, \text { Slope }}=4.8 \mathrm{~m}$	Diagrams not to scale
Brittle finishes (e.g. plasterboard) on the underside of the rafter?	No	

Modification factors

Depth factor
$\mathrm{K}_{7}=(300 / \mathrm{h})^{0.11}=\mathbf{1 . 0 3}$
Load sharing modification factor (BS5268-2 clause 2.10.11)
$\mathrm{K}_{8}=\mathbf{1 . 1 0}$

Section properties

Mean modulus of elasticity
Minimum modulus of elasticity
Cross section area
Second moment of area
Section modulus
Radius of gyration
Average density for C24 timber (BS 5268-2:2002 Table 8)
Self weight per linear metre ($g=9.81 \mathrm{~m} / \mathrm{s}^{2}$)
$E_{\text {mean }}=\mathbf{1 0 , 8 0 0} \mathrm{N} / \mathrm{mm}^{2}$
$E_{\text {min }}=\mathbf{7 , 2 0 0} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{~A}=\mathrm{b} \times \mathrm{h}=\mathbf{1 1 , 2 0 0} \mathrm{mm}^{2}$
$\mathrm{I}=\mathrm{b} \times \mathrm{h}^{3} / 12=\mathbf{4 7 , 5 0 0 , 0 0 0} \mathrm{mm}^{4}$
$\mathrm{Z}=\mathrm{b} \times \mathrm{h}^{2} / 6=\mathbf{4 2 2 , 0 0 0} \mathrm{mm}^{3}$
$\mathrm{i}=\sqrt{ }(\mathrm{I} / \mathrm{A})=\mathbf{6 5 ~ m m}$
$\rho_{\text {mean }}=\mathbf{4 2 0} \mathrm{kg} / \mathrm{m}^{3}$
$\mathrm{~F}_{\text {rafter }}=\mathrm{b} \times \mathrm{h} \times \rho_{\text {mean }} \times \mathrm{g}=\mathbf{0 . 0 4 6 4} \mathrm{kN} / \mathrm{m}$

Consider long term loading ($\mathbf{0 . 7 5} \mathbf{~ k N} / \mathbf{m}^{\mathbf{2}}$ dead UDL. K3 $=\mathbf{1}$)

K3 (long term load)
Total load
Grade bending stress for C24 (BS5268-2:2002 Table 8)
Permissible bending stress
Compression perpendicular to grain for C24
(BS5268-2:2002 Table 8)
$K_{3}=1$
$F=F_{\text {dead }} \times \cos (\alpha) \times(s / 1000)+F_{\text {rafter }} \times \cos (\alpha)=0.294 \mathrm{kN} / \mathrm{m}$
$\sigma_{\mathrm{m}, \mathrm{par}}=7.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{adm}}=\sigma_{\mathrm{m}, \mathrm{par}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=8.52 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c, \text { per }}=1.9 \mathrm{~N} / \mathrm{mm}^{2}$

Notional bearing length
(Note from BS 5268-7.5 Clause 4.2: 'The bearing length required at each end of the rafter, calculated in accordance with 5.6, may not be sufficient for practical construction purposes.')
Effective span on slope

Check bending stress

Bending moment
Bending stress

Check shear stress

Grade shear stress for C24 (BS5268-2:2002 Table 8)
Permissible shear stress
Shear stress

Check compressive stress parallel to grain

Compression stress parallel to grain
Minimum modulus of elasticity
Slenderness ratio
Compression member factor (calculated using equation in BS5268-7.5 clause 5.3.1)

Permissible compressive stress
Applied compressive stress

Check combined bending and compressive stress

Euler critical stress
Euler coefficient
Combined axial compression and bending check

$$
\mathrm{a}=\left(\mathrm{L}_{\mathrm{c}, \text { slope }} \times \mathrm{F} / 2\right) /\left(\sigma_{\mathrm{c}, \text { per }} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{b}-(\mathrm{F} / 2)\right)=\mathbf{6 . 7 6} \mathrm{mm}
$$

$L_{\text {eff }}=L_{c, \text { slope }}+a=4.81 \mathrm{~m}$
$M=F \times L_{\text {eff }}{ }^{2} / 8=0.849 \mathrm{kNm}$
$\sigma_{\mathrm{m}, \mathrm{a}}=\left(\mathrm{M} \times 10^{6}\right) / \mathrm{Z}=2.01 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m}, \mathrm{a}}<=\sigma_{\mathrm{adm}}\left(2.013 \mathrm{~N} / \mathrm{mm}^{2}<=8.515 \mathrm{~N} / \mathrm{mm}^{2}\right)$ therefore OK
$\tau_{\text {par }}=0.71 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {adm }}=\tau_{\text {par }} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=\mathbf{0 . 7 8 1} \mathrm{N} / \mathrm{mm}^{2}$
$\tau=\left(3 \times F \times L_{\text {eff }} / 2 \times 10^{3}\right) /(2 \times b \times h)=0.0942 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau<=\tau_{\text {adm }}\left(0.094 \mathrm{~N} / \mathrm{mm}^{2}<=0.781 \mathrm{~N} / \mathrm{mm}^{2}\right)$ therefore OK
$\sigma_{\mathrm{c}, \mathrm{par}}=7.9 \mathrm{~N} / \mathrm{mm}^{2}$
$E_{\text {min }}=\mathbf{7 , 2 0 0 ~ N} / \mathrm{mm}^{2}$
$\lambda=L_{\text {eff }} / i=74$
$\mathrm{K}_{12}=\mathbf{0 . 5 6 6}$
$\sigma_{c, \text { adm }}=\sigma_{c, \text { par }} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=4.92 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c, a}=0.233 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c, a}<=\sigma_{c, a d m}\left(0.233 \mathrm{~N} / \mathrm{mm}^{2}<=4.92 \mathrm{~N} / \mathrm{mm}^{2}\right)$ therefore OK
$\sigma_{\mathrm{e}}=\pi^{2} \times \mathrm{E}_{\text {min }} / \lambda^{2}=13 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{K}_{\mathrm{eu}}=1-\left(1.5 \times \sigma_{\mathrm{c}} \times \mathrm{L}_{12} / \sigma_{\mathrm{e}}\right)=0.985$
$=\sigma_{\mathrm{m}, \mathrm{a}} /\left(\sigma_{\mathrm{m}, \mathrm{adm}} \times \mathrm{K}_{\mathrm{eu}}\right)+\sigma_{\mathrm{c}} / \sigma_{\mathrm{c}, \mathrm{adm}}=\mathbf{0 . 2 8 7}$

0.287 < $\mathbf{1}$ therefore OK

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection
$\delta_{\text {adm }}=0.003 \times L_{\text {eff }}=\mathbf{1 4 . 4} \mathbf{~ m m}$
$\delta_{\text {bending }}=\left(5 \times F \times \mathrm{L}_{\text {eff }}{ }^{4}\right) /\left(384 \times \mathrm{E}_{\text {mean }} \times \mathrm{I}\right)=\mathbf{3 . 9 9 \mathrm { mm }}$
$\delta_{\text {shear }}=\left(12 \times F \times L_{\text {eff }}{ }^{2}\right) /\left(5 \times \mathrm{E}_{\text {mean }} \times \mathrm{b} \times \mathrm{h}\right)=\mathbf{0 . 1 3 4} \mathrm{mm}$
$\delta_{\text {total }}=\delta_{\text {bending }}+\delta_{\text {shear }}=\mathbf{4 . 1 2 ~ m m}$

Consider medium term loading ($0.75 \mathrm{kN} / \mathrm{m}^{2}$ dead UDL + $0.75 \mathrm{kN} / \mathrm{m}^{\mathbf{2}}$ imposed UDL. K3 = 1.25)

K3 (medium term load)

$$
K_{3}=\mathbf{1 . 2 5}
$$

BS 5268-7.5 Clause 4.3: For a roof slope greater than 30° and not exceeding 75° : an imposed load obtained by linear interpolation between the values at 30° roof slope, e.g. $0.75 \mathrm{kN} / \mathrm{m} 2$, and zero for a 75° roof slope.

Imposed load (UDL)
Total load

Grade bending stress for C24 (BS5268-2:2002 Table 8)
Permissible bending stress
Compression perpendicular to grain for C 24
(BS5268-2:2002 Table 8)
Notional bearing length
(Note from BS 5268-7.5 Clause 4.2: 'The bearing length required at each end of the rafter, calculated in accordance with 5.6, may not be sufficient for practical construction purposes.')
Effective span on slope

Check bending stress

Bending moment

Bending stress

$F_{\text {imposed, udl }}=0.75 \times((75-\alpha) / 45)=0.583 \mathrm{kN} / \mathrm{m}^{2}$
$F=\left(F_{\text {imposed, udl }} \times \cos (\alpha)^{2}+F_{\text {dead }} \times \cos (\alpha)\right) \times(s / 1000)+F_{\text {ratter }} \times \cos (\alpha)=$
0.448 kN/m
$\sigma_{\mathrm{m}, \mathrm{par}}=7.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\text {adm }}=\sigma_{\mathrm{m}, \mathrm{par}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=\mathbf{1 0 . 6} \mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{c}, \mathrm{per}}=1.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{a}=\left(\mathrm{L}_{\mathrm{cl}, \text { slope }} \times \mathrm{F} / 2\right) /\left(\sigma_{c, \text { per }} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{b}-(\mathrm{F} / 2)\right)=\mathbf{8 . 2 5} \mathrm{mm}$
$L_{\text {eff }}=L_{c l, \text { slope }}+a=4.81 \mathrm{~m}$
$\mathrm{M}=\mathrm{F} \times \mathrm{L}_{\text {eff }}{ }^{2} / 8=1.29 \mathrm{kNm}$
$\sigma_{\mathrm{m}, \mathrm{a}}=\left(\mathrm{M} \times 10^{6}\right) / \mathrm{Z}=3.07 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m}, \mathrm{a}}<=\sigma_{\mathrm{adm}}\left(3.069 \mathrm{~N} / \mathrm{mm}^{2}<=10.644 \mathrm{~N} / \mathrm{mm}^{2}\right)$ therefore OK
$\tau_{\text {par }}=0.71 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {adm }}=\tau_{\text {par }} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.976 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau=\left(3 \times F \times L_{\text {eff }} / 2 \times 10^{3}\right) /(2 \times b \times h)=0.144 N / \mathrm{mm}^{2}$
$\tau<=\tau_{\text {adm }}\left(0.144 \mathrm{~N} / \mathrm{mm}^{2}<=0.976 \mathrm{~N} / \mathrm{mm}^{2}\right)$ therefore OK

Check compressive stress parallel to grain

Compression stress parallel to grain
Minimum modulus of elasticity
Slenderness ratio
Compression member factor (calculated using equation in BS5268-7.5 clause 5.3.1)

Permissible compressive stress
Applied compressive stress
$\sigma_{c, \text { par }}=7.9 \mathrm{~N} / \mathrm{mm}^{2}$
$E_{\text {min }}=\mathbf{7 , 2 0 0} \mathrm{N} / \mathrm{mm}^{2}$
$\lambda=L_{\text {eff }} / i=74$
$\mathrm{K}_{12}=\mathbf{0 . 5 2 2}$

$$
\sigma_{\mathrm{c}, \mathrm{adm}}=\sigma_{\mathrm{c}, \mathrm{par}} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=5.67 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\sigma_{c, a}=0.355 \mathrm{~N} / \mathrm{mm}^{2}$

PlanningApplications.com Summer House, Upper Court Road, SURREY. CR3 7BF 0203294 9477	Project New Hip Roof Rafters - max length 4.8m C24 no purlin	Project ref 2023-7459
www.planningapplications.com support@planningapplications.com	Calcs for 47 Moorfields Nantwich CW5 6QY	Date

$$
\sigma_{c, \mathrm{a}}<=\sigma_{\mathrm{c}, \mathrm{adm}}\left(0.355 \mathrm{~N} / \mathrm{mm}^{2}<=5.668 \mathrm{~N} / \mathrm{mm}^{2}\right) \text { therefore OK }
$$

Check combined bending and compressive stress

Euler critical stress
Euler coefficient
Combined axial compression and bending check
$\sigma_{\mathrm{e}}=\pi^{2} \times \mathrm{E}_{\text {min }} / \lambda^{2}=13 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{K}_{\text {eu }}=1-\left(1.5 \times \sigma_{\mathrm{c}} \times \mathrm{L}_{12} / \sigma_{\mathrm{e}}\right)=\mathbf{0 . 9 7 9}$
$=\sigma_{\mathrm{m}, \mathrm{a}} /\left(\sigma_{\mathrm{m}, \mathrm{dam}} \times \mathrm{K}_{\mathrm{eu}}\right)+\sigma_{\mathrm{c}} / \sigma_{\mathrm{c}, \mathrm{adm}}=\mathbf{0 . 3 5 7}$

$\mathbf{0 . 3 5 7}$ <= $\mathbf{1}$ therefore OK

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection
$\delta_{\text {adm }}=0.003 \times \mathrm{L}_{\text {eff }}=\mathbf{1 4 . 4} \mathbf{~ m m}$
$\delta_{\text {bending }}=\left(5 \times F \times L_{\text {eff }}{ }^{4}\right) /\left(384 \times E_{\text {mean }} \times I\right)=6.08 \mathrm{~mm}$
$\delta_{\text {shear }}=\left(12 \times F \times L_{\text {eff }}{ }^{2}\right) /\left(5 \times E_{\text {mean }} \times b \times h\right)=\mathbf{0 . 2 0 5} \mathbf{m m}$
$\delta_{\text {total }}=\delta_{\text {bending }}+\delta_{\text {shear }}=6.29 \mathrm{~mm}$
$\delta_{\text {total }}<=\delta_{\text {adm }}(6.289 \mathrm{~mm}<=14.425 \mathrm{~mm})$ therefore OK

Design summary

| | Permissible Applied/Actual Utilisation Result | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Long term load shear stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 0.78 | 0.09 | 12.1% | OK |
| Long term load bending stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 8.52 | 2.01 | 23.6% | OK |
| Long term load deflection (mm) | 14.4 | 4.12 | 28.6% | OK |
| Long term compressive stress parallel to grain $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 4.92 | 0.23 | 4.7% | OK |
| Long term combined bending and compressive stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 1 | 0.29 | 28.7% | OK |
| Medium term load shear stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 0.98 | 0.14 | 14.7% | OK |
| Medium term load bending stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 10.6 | 3.07 | 28.8% | OK |
| Medium term load deflection (mm) | 14.4 | 6.29 | 43.6% | OK |
| Medium term compressive stress parallel to grain $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 5.67 | 0.36 | 6.3% | OK |
| Medium term combined bending and compressive $\operatorname{stress}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 1 | 0.36 | 35.7% | OK |

Notes

This design is in accordance with BS 5268-2:2002 Structural use of timber - Part 2: Code of practice for permissible stress design, materials and workmanship and BS 5268-7.5:1990 Structural use of timber - Section 7.5 Domestic rafters.

These calculations apply to systems of at least four rafters, and having tiling battens adequate to provide lateral distribution and lateral support.

Timber to be covered, this calculation is not to be used for timber which is fully exposed to the elements.

PlanningApplications.com Summer House, Upper Court Road, SURREY. CR3 7BF 02032949477	Project New Hip Roof Rafters - max length 4.8m C24 no purlin	Project ref 2023-7459
www.planningapplications.com support@planningapplications.com	Calcs for 47 Moorfields Nantwich CW5 6QY	Date

As there are no brittle finishes e.g. plasterboard on the underside of the rafters the effects of deflection under the concentrated (point) load do not need to be considered as per guidance given in BS 5268-7.5 clause 4.3.

For roof slopes greater than 30 degrees, the concentrated (point) 0.9 kN load can be ignored in accordance with BS 5268-7.5 Clause 4.3.
These calculations are only applicable for roofs consisting of four or more rafters.
Wane as allowed in BS 4978:2007 + A2:2017 is permitted.

