Structural Calculations \& Specifications

To

Side extension opening

 The Coach House, Sandridge Park, Sandridge Common, Melksham, Wiltshire, SN12 7QUBy
Mr Steffan Baker
www.planningapplications.com

CONTENTS

1. Construction drawing \& Specifications.
2. Pad Foundation Specifications \& Calculations
3. Masonry Column Design \& Calculations
4. Padstone Calculations
5. Steel BEAMS design \& Calculations

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project Pad Concrete Foundations for $440 \times 440 \mathrm{~mm}$ Columns				Job no. Start page no./Revision 1	
	Calcs for \quad The Old Coach House - Dylan \& Poppy					
	Calcs by SB	$\begin{aligned} & \text { Calcs date } \\ & 20 / 06 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{\|c\|} \hline \text { Checked date } \\ 20 / 06 / 2023 \end{array}$	Approved by SB	Approved date 20/06/2023

UNREINFORCED PAD FOUNDATION FOR MASONRY COLUMN

Foundation analysis in accordance with EN1997-1:2004 + A1:2013 incorporating corrigendum February 2009 and the recommended values

Tedds calculation version 3.3.05
Summary table

Description	Unit	Allowable	Actual	Utilisation	Result
Base pressure	$\mathrm{kN} / \mathrm{m}^{2}$	368	171.2	0.465	Pass
Concrete projection	mm	1067	830	0.778	Pass

Pad foundation details

Length of foundation
$L_{x}=1500 \mathrm{~mm}$
Width of foundation
$L_{y}=1200 \mathrm{~mm}$
Foundation area
$A=L_{x} \times L_{y}=1.800 \mathrm{~m}^{2}$
Depth of foundation
Depth of soil over foundation
$\mathrm{h}=1000 \mathrm{~mm}$
$\mathrm{h}_{\text {soil }}=200 \mathrm{~mm}$
Level of water
Density of water
$h_{\text {water }}=0 \mathrm{~mm}$
$\gamma_{\text {water }}=9.8 \mathrm{kN} / \mathrm{m}^{3}$
Density of concrete
$\gamma_{\text {conc }}=25.0 \mathrm{kN} / \mathrm{m}^{3}$

$171.2 \mathrm{kN} / \mathrm{m}^{2}$

$171.2 \mathrm{kN} / \mathrm{m}^{2}$

$171.2 \mathrm{kN} / \mathrm{m}^{2}$

Column no. 1 details

Length of column
Width of column position in x-direction position in y-direction
$\mathrm{I}_{\mathrm{x} 1}=440 \mathrm{~mm}$
$\mathrm{l}_{\mathrm{y} 1}=440 \mathrm{~mm}$
$\mathrm{x}_{1}=450 \mathrm{~mm}$
$\mathrm{y}_{1}=\mathbf{6 0 0} \mathrm{mm}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF 07922 148701	Project Pad Concrete Foundations for $440 \times 440 \mathrm{~mm}$ Columns				Job no. Start page no./Revision 241	
	Calcs for The Old Coach House - Dylan \& Poppy					
	Calcs by SB	$\begin{aligned} & \text { Calcs date } \\ & 20 / 06 / 2023 \end{aligned}$	Checked by DB	Checked date 20/06/2023	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 20 / 06 / 2023 \\ \hline \end{array}$

Soil properties	
Density of soil	$\gamma_{\text {soil }}=18.0 \mathrm{kN} / \mathrm{m}^{3}$
Characteristic cohesion	$\mathrm{C}^{\prime}{ }_{\mathrm{k}}=0 \mathrm{kN} / \mathrm{m}^{2}$
Characteristic effective shear resistance angle	$\phi^{\prime}{ }_{k}=30 \mathrm{deg}$
Characteristic friction angle	$\delta_{\mathrm{k}}=20 \mathrm{deg}$
Foundation loads	
Self weight	$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=25.0 \mathrm{kN} / \mathrm{m}^{2}$
Soil weight	$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=3.6 \mathrm{kN} / \mathrm{m}^{2}$
Column no. 1 loads	
Permanent axial load	$F_{G z 1}=150.0 \mathrm{kN}$
Variable axial load	$\mathrm{F}_{Q z 1}=10.0 \mathrm{kN}$
Design approach 1	
Partial factors on actions - Combination1	
Partial factor set	A1
Permanent unfavourable action - Table A. 3	$\gamma_{G}=1.35$
Permanent favourable action - Table A. 3	$\gamma_{\mathrm{Gf}}=1.00$
Variable unfavourable action - Table A. 3	$\gamma_{Q}=1.50$
Variable favourable action - Table A. 3	$\gamma_{Q f}=0.00$
Partial factors for soil parameters - Combination1	
Soil factor set	M1
Angle of shearing resistance - Table A. 4	$\gamma_{\phi^{\prime}}=1.00$
Effective cohesion - Table A. 4	$\gamma_{\mathrm{c}^{\prime}}=1.00$
Weight density - Table A. 4	$\gamma_{\gamma}=1.00$
Partial factors for spread foundations-Combination1	
Resistance factor set	R1
Bearing - Table A. 5	$\gamma_{R . v}=1.00$
Sliding - Table A. 5	$\gamma_{\text {R.h }}=1.00$
Bearing resistance (Section 6.5.2)	
Forces on foundation	
Force in z-direction	$\mathrm{F}_{\mathrm{dz}}=\gamma_{\mathrm{G}} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right)+\mathrm{F}_{\mathrm{Gz1}}\right)+\gamma_{\mathrm{Q}} \times \mathrm{F}_{\mathrm{Qz1}}=\mathbf{2 8 7 . 0} \mathrm{kN}$
Moments on foundation	
Moment in x-direction	$M_{d x}=\gamma_{G} \times\left(\mathbf{A} \times\left(F_{s w t}+F_{\text {soil }}\right) \times L_{x} / 2+F_{G z 1} \times x_{1}\right)+\gamma_{Q} \times F_{Q z 1} \times X_{1}=\mathbf{1 5 0 . 0}$ kNm
Moment in y-direction	$M_{d y}=\gamma_{G} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soii }}\right) \times L_{y} / 2+F_{G z 1} \times y_{1}\right)+\gamma_{Q} \times F_{Q z 1} \times y_{1}=172.2$ kNm
Eccentricity of base reaction	
Eccentricity of base reaction in x-direction	$\mathrm{e}_{\mathrm{x}}=\mathrm{M}_{\mathrm{dx}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{x}} / 2=\mathbf{- 2 2 7} \mathrm{mm}$
Eccentricity of base reaction in y -direction	$\mathrm{e}_{\mathrm{y}}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-L_{\text {y }} / 2=0 \mathrm{~mm}$
Effective area of base	
Effective length	$L^{\prime}{ }_{x}=L_{x}+2 \times e_{x}=1045 \mathrm{~mm}$
Effective width	$L^{\prime} y=L_{y}-2 \times e_{y}=1200 \mathrm{~mm}$
Effective area	$A^{\prime}=L^{\prime} \times L^{\prime}{ }_{y}=1.254 \mathrm{~m}^{2}$

Soil properties
Density of soil
$\mathrm{c}_{\mathrm{k}}=0 \mathrm{kN} / \mathrm{m}^{2}$
Characteristic effective shear resistance angle
$\delta_{k}=20 \mathrm{deg}$
Foundation loads

Column no. 1 loads

Permanent axial load $\quad F_{G z 1}=150.0 \mathrm{kN}$
Variable axial load
$F_{Q z 1}=10.0 \mathrm{kN}$

Design approach 1

Partial factors on actions - Combination1
Partial factor set
$\gamma_{G}=1.35$
Permanent favourable action - Table A. 3
$\gamma_{\mathrm{Gf}}=1.00$
Variable unfavourable action - Table A. 3
$\gamma_{Q}=1.50$
$\gamma_{\mathrm{Qf}}=\mathbf{0 . 0 0}$
Partial factors for soil parameters - Combination1

Angle of shearing resistance - Table A. $4 \quad \gamma_{\phi^{\prime}}=1.00$
Effective cohesion - Table A. 4
$\gamma_{\mathrm{c}^{\prime}}=1.00$
Weight density - Table A. 4
$\gamma_{\gamma}=1.00$

Bearing - Table A. 5
$\gamma_{R . v}=1.00$
Sliding - Table A. 5
$F_{d z}=\gamma_{G} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\mathrm{swt}}+\mathrm{F}_{\text {soil }}\right)+\mathrm{F}_{\mathrm{Gz1}}\right)+\gamma_{\mathrm{Q}} \times \mathrm{F}_{\mathrm{Qz1}}=\mathbf{2 8 7 . 0} \mathrm{kN}$
$M_{d x}=\gamma_{G} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{x} / 2+F_{G z 1} \times \mathrm{X}_{1}\right)+\gamma_{Q} \times F_{Q z 1} \times \mathrm{X}_{1}=\mathbf{1 5 0 . 0}$
kNm
$M_{d y}=\gamma_{G} \times\left(A \times\left(F_{s w t}+F_{\text {soil }}\right) \times L_{y} / 2+F_{G z 1} \times y_{1}\right)+\gamma_{Q} \times F_{Q z 1} \times y_{1}=172.2$
kNm
$\mathrm{e}_{\mathrm{x}}=\mathrm{M}_{\mathrm{dx}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{x}} / 2=\mathbf{- 2 2 7} \mathrm{mm}$
$L^{\prime}{ }_{x}=L_{x}+2 \times e_{x}=1045 \mathrm{~mm}$
$L^{\prime} y=L_{y}-2 \times e_{y}=1200 \mathrm{~mm}$
$A^{\prime}=L^{\prime}{ }_{x} \times L^{\prime}{ }_{y}=1.254 \mathrm{~m}^{2}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project Pad Concrete Foundations for $440 \times 440 \mathrm{~mm}$ Columns				Job no. Start page no./Revision 3	
	Calcs for The Old Coach House - Dylan \& Poppy					
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 20 / 06 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|l\|} \hline \text { Checked date } \\ \hline 20 / 06 / 2023 \end{array}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 20 / 06 / 2023 \\ \hline \end{array}$

Pad base pressure	
Design base pressure	$\mathrm{f}_{\mathrm{dz}}=\mathrm{F}_{\mathrm{dz}} / \mathrm{A}^{\prime}=228.8 \mathrm{kN} / \mathrm{m}^{2}$
Ultimate bearing capacity under drained conditions (Annex D.4)	
Design angle of shearing resistance	$\phi^{\prime}{ }^{\prime}=\operatorname{atan}\left(\tan \left(\phi^{\prime}\right)^{\prime} / \gamma_{\phi^{\prime}}\right)=30.000 \mathrm{deg}$
Design effective cohesion	$c^{\prime}{ }_{d}=c_{k}^{\prime} / \gamma_{c^{\prime}}=0.000 \mathrm{kN} / \mathrm{m}^{2}$
Effective overburden pressure	$\mathrm{q}=\left(\mathrm{h}+\mathrm{h}_{\text {soil }}\right) \times \gamma_{\text {soil }}-\mathrm{h}_{\text {water }} \times \gamma_{\text {water }}=21.600 \mathrm{kN} / \mathrm{m}^{2}$
Design effective overburden pressure	$\mathrm{q}^{\prime}=\mathrm{q} / \gamma_{\gamma}=21.600 \mathrm{kN} / \mathrm{m}^{2}$
Bearing resistance factors	$N_{\mathrm{q}}=\operatorname{Exp}\left(\pi \times \tan \left(\phi^{\prime} \mathrm{d}\right)\right) \times\left(\tan \left(45 \mathrm{deg}+\phi^{\prime} / 2\right)\right)^{2}=18.401$
	$\mathrm{N}_{\mathrm{c}}=\left(\mathrm{N}_{\mathrm{q}}-1\right) \times \cot \left(\phi^{\prime}{ }_{\mathrm{d}}\right)=\mathbf{3 0 . 1 4 0}$
	$\mathrm{N}_{\gamma}=2 \times\left(\mathrm{N}_{\mathrm{q}}-1\right) \times \tan \left(\phi^{\prime} \mathrm{d}\right)=20.093$
Foundation shape factors	$\mathrm{s}_{\mathrm{q}}=1+\left(L^{\prime} \times / L^{\prime}{ }_{y}\right) \times \sin \left(\phi^{\prime} \mathrm{d}\right)=1.436$
	$\mathrm{s}_{\gamma}=1-0.3 \times\left(L^{\prime} / L^{\prime} y\right)=0.739$
	$\mathrm{s}_{\mathrm{c}}=\left(\mathrm{s}_{\mathrm{q}} \times \mathrm{N}_{\mathrm{q}}-1\right) /\left(\mathrm{N}_{\mathrm{q}}-1\right)=1.461$
Load inclination factors	$\mathrm{H}=0.0 \mathrm{kN}$
	$m_{y}=\left[2+\left(L^{\prime} y / L^{\prime}\right)\right] /\left[1+\left(L^{\prime} / L^{\prime} L_{x}\right)\right]=1.466$
	$m_{x}=\left[2+\left(L^{\prime} / L^{\prime}\right)\right.$) $/\left[1+\left(L^{\prime} / L^{\prime} L_{y}\right)\right]=1.534$
	$\mathrm{m}=\mathrm{m}_{\mathrm{x}}=1.534$
	$\mathrm{i}_{\mathrm{q}}=\left[1-\mathrm{H} /\left(\mathrm{F}_{\mathrm{dz}}+\mathrm{A}^{\prime} \times \mathrm{c}_{\mathrm{d}}^{\prime} \times \cot \left(\phi^{\prime} \mathrm{d}\right)\right)\right]^{\mathrm{m}}=1.000$
	$i_{\gamma}=\left[1-H /\left(F_{d z}+A^{\prime} \times \mathrm{C}^{\prime}{ }_{\mathrm{d}} \times \cot \left(\phi^{\prime} \mathrm{d}\right)\right)\right]^{\mathrm{m}+1}=1.000$
	$\mathrm{i}_{\mathrm{c}}=\mathrm{i}_{\mathrm{q}}-\left(1-\mathrm{i}_{\mathrm{q}}\right) /\left(\mathrm{N}_{\mathrm{c}} \times \tan \left(\phi^{\prime} \mathrm{d}\right)\right)=1.000$
Ultimate bearing capacity	$\mathrm{n}_{\mathrm{f}}=\mathrm{c}_{\mathrm{d}}^{\prime} \times \mathrm{N}_{\mathrm{c}} \times \mathbf{s}_{\mathrm{c}} \times \mathrm{i}_{\mathrm{c}}+\mathrm{q}^{\prime} \times \mathrm{N}_{\mathrm{q}} \times \mathbf{s}_{\mathrm{q}} \times \mathrm{i}_{\mathrm{q}}+0.5 \times \gamma_{\text {soil }} \times \mathrm{L}^{\prime} \times \times \mathrm{N}_{\gamma} \times \mathbf{s}_{\gamma} \times \mathrm{i}_{\gamma}=$ $710.2 \mathrm{kN} / \mathrm{m}^{2}$

PASS - Ultimate bearing capacity exceeds design base pressure

Design approach 1

Partial factors on actions - Combination2

Partial factor set
A2
Permanent unfavourable action - Table A. $3 \quad \gamma_{G}=\mathbf{1 . 0 0}$
Permanent favourable action - Table A. $3 \quad \gamma_{\mathrm{Gf}}=\mathbf{1 . 0 0}$
Variable unfavourable action - Table A. $3 \quad \gamma_{Q}=1.30$
Variable favourable action - Table A. 3
$\gamma_{Q f}=0.00$

Partial factors for soil parameters - Combination2

Soil factor set
Angle of shearing resistance - Table A. 4
Effective cohesion - Table A. 4
Weight density - Table A. 4M2
$\gamma_{\phi^{\prime}}=1.25$
$\gamma_{\mathrm{c}^{\prime}}=1.25$
$\gamma_{\gamma}=1.00$

Partial factors for spread foundations - Combination2

Resistance factor set
R1
Bearing - Table A. 5
$\gamma_{R . v}=1.00$
Sliding - Table A. 5
$\gamma_{\mathrm{R} . \mathrm{h}}=1.00$

Bearing resistance (Section 6.5.2)

Forces on foundation

Force in z-direction
$F_{d z}=\gamma_{G} \times\left(A \times\left(F_{s w t}+F_{s o i l}\right)+F_{G z 1}\right)+\gamma_{Q} \times F_{Q z 1}=\mathbf{2 1 4 . 5} \mathrm{kN}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project Pad Concrete Foundations for $440 \times 440 \mathrm{~mm}$ Columns				Job no. Start page no./Revision 4	
	Calcs for The Old Coach House - Dylan \& Poppy					
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 20 / 06 / 2023 \end{array}$	Checked by DB	Checked date 20/06/2023	Approved by SB	Approved date 20/06/2023

Moments on foundation

UNREINFORCED PAD FOUNDATION FOR MASONRY COLUMN

Foundation design in accordance with EN1992-1-1:2004 + A1:2014 incorporating corrigenda January 2008, November 2010 and January 2014 and the recommended values

Tedds calculation version 3.3.05
Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)

Concrete strength class
Characteristic compressive cylinder strength
Mean value of axial tensile strength
5% fractile of axial tensile strength

C30/37
$\mathrm{f}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ctm}}=0.3 \mathrm{~N} / \mathrm{mm}^{2} \times\left(\mathrm{f}_{\mathrm{ck}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right)^{2 / 3}=2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\text {ctk }, 0.05}=0.7 \times \mathrm{f}_{\mathrm{ctm}}=2.0 \mathrm{~N} / \mathrm{mm}^{2}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project Pad Concrete Foundations for $440 \times 440 \mathrm{~mm}$ Columns				Job no.241	
	The Old Coach House - Dylan \& Poppy				Start page no./Revision 5	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 20 / 06 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 20 / 06 / 2023 \end{array}$	Approved by SB	Approved date 20/06/2023

Partial factor for concrete (Table 2.1 N) $\quad \gamma_{C}=1.50$
Tens.strength coeff.for plain concrete (cl.12.3.1(1)) $\alpha_{\text {ct.pl }}=\mathbf{0 . 8 0}$
Des.tens.strength for plain concrete (exp.12.1) $\quad f_{\text {ctd, pl }}=\alpha_{\mathrm{ct}, \mathrm{pl}} \times \mathrm{f}_{\mathrm{ctk}, 0.05} / \gamma_{\mathrm{c}}=1.1 \mathrm{~N} / \mathrm{mm}^{2}$
Strip and pad footings (Section 12.9.3)
Design base pressure $\quad f_{d z}=228.8 \mathrm{kN} / \mathrm{m}^{2}$
Projection from column face
$\mathrm{a}=\mathbf{8 3 0} \mathrm{mm}$
Max.projection from column face - (exp.12.13) $\quad a_{\max }=0.85 \times h / \sqrt{ }\left[3 \times \mathrm{f}_{\mathrm{dz}} / \mathrm{f}_{\text {ctd, pl }}\right]=1067 \mathrm{~mm}$
PASS - Projection from the column face doesn't exceed permissible limit for plain concrete

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project Masonry Columns $440 \times 440 \mathrm{~mm}$ High Newton Concrete Blocks				Job no.241	
	The Old Coach House - Dylan \& Poppy				Start page no./Revision 1	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 20 / 06 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 20 / 06 / 2023 \end{array}$	Approved by SB	Approved date 20/06/2023

MASONRY COLUMN DESIGN

In accordance with EN1996-1-1:2005 incorporating corrigenda February 2006 and July 2009 and the UK national annex

Tedds calculation version 1.0.07

Design summary

Description	Unit	Capacity	Maximum	Utilisation	Result
Slenderness		27.0	8.0	0.295	PASS
Vertical loading	kN	361.1	196.5	0.544	PASS

Geometry

Width of column
Thickness of column
Height of column
Reduction factor for effective height
Effective height of column (cl 5.5.1.2)
$\mathrm{b}=440 \mathrm{~mm}$
$\mathrm{t}=440 \mathrm{~mm}$
$\mathrm{h}=3500 \mathrm{~mm}$
$\rho_{2}=1.0$
$h_{\text {eff }}=h \times \rho_{2}=3500 \mathrm{~mm}$

Loading

Vertical dead load
$\mathrm{G}_{\mathrm{k}}=120.0 \mathrm{kN}$
Eccentricity of dead load in x-direction
Eccentricity of dead load in y-direction
$e_{\mathrm{Gb}}=0 \mathrm{~mm}$

Vertical live load
$\mathrm{e}_{\mathrm{Gt}}=0 \mathrm{~mm}$
$Q_{k}=25.0 \mathrm{kN}$
Eccentricity of variable load in x-direction
$\mathrm{e}_{\mathrm{Qb}}=0 \mathrm{~mm}$
Eccentricity of variable load in y-direction
$\mathrm{e}_{\mathrm{Qt}}=0 \mathrm{~mm}$
Characteristic wind loading
$W_{\mathrm{k}}=0.0 \mathrm{kN} / \mathrm{m}^{2}$
Vertical wind loading
$W_{\mathrm{v}}=0.0 \mathrm{kN}$

Masonry details

Masonry type
Aggregate concrete brick - Group 1
Compressive strength of masonry unit
Height of unit
$\mathrm{f}_{\mathrm{c}}=7.3 \mathrm{~N} / \mathrm{mm}^{2}$
$h_{u}=215 \mathrm{~mm}$
$\mathrm{w}_{\mathrm{u}}=100 \mathrm{~mm}$
Conditioning factor
$k=1.0$

- Conditioning to the air dry condition in accordance with cl.7.3.2

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project Masonry Columns $440 \times 440 \mathrm{~mm}$ High Newton Concrete Blocks				Job no.241	
	The Old Coach House - Dylan \& Poppy				Start page no./Revision 2	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 20 / 06 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 20 / 06 / 2023 \end{array}$	Approved by SB	Approved date 20/06/2023

Shape factor - Table A. 1
Mean compressive strength of masonry unit Density of masonry

Mortar type
Compressive strength of masonry mortar
Compressive strength factor - Table NA. 4
$\mathrm{d}_{\mathrm{sf}}=1.38$
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}} \times \mathrm{k} \times \mathrm{d}_{\mathrm{sf}}=10.074 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$
M6-General purpose mortar
$\mathrm{f}_{\mathrm{m}}=\mathbf{6 N} / \mathrm{mm}^{2}$
$K=0.75$

Characteristic compressive strength of masonry - eq 3.1

$$
\mathrm{f}_{\mathrm{k}}=\mathrm{K} \times \mathrm{f}_{\mathrm{b}}^{0.7} \times \mathrm{f}_{\mathrm{m}}{ }^{0.3}=6.468 \mathrm{~N} / \mathrm{mm}^{2}
$$

Characteristic flexural strength of masonry having a plane of failure parallel to the bed joints - Table NA. 6

$$
\mathrm{f}_{\mathrm{xk} 1}=0.3 \mathrm{~N} / \mathrm{mm}^{2}
$$

Characteristic flexural strength of masonry having a plane of failure perpendicular to the bed joints - Table NA. 6

$$
\mathrm{f}_{\mathrm{xk} 2}=0.9 \mathrm{~N} / \mathrm{mm}^{2}
$$

Partial factors for material strength

Category of manufacturing control

Category II

Class of execution control
Class 2
Partial factor for masonry in compressive flexure
$\gamma_{\mathrm{Mc}}=\mathbf{3 . 0 0}$

Slenderness ratio

Slenderness ratio minor axis (cl.5.5.2.1)
Slenderness ratio major axis (cl.5.5.2.1)
Maximum slenderness

$$
\begin{aligned}
& \lambda_{t}=h_{\text {eff }} / t=7.95 \\
& \lambda_{b}=h_{\text {eff }} / b=7.95 \\
& \lambda=\max \left(\lambda_{t}, \lambda_{b}\right)=7.95
\end{aligned}
$$

PASS - Slenderness ratio is less than 27
Load combinations derived from Eq.6.10a and Eq.6.10b for lateral and vertical loading (utilisation)
Combination $1 \quad 1.35 \times$ perm unfav $+1 \times$ perm fav $+1.5 \times 0.7 \times$ variable $+1.5 \times 0.5 \times$ wind (0.544)
Combination $20.925 \times 1.35 \times$ perm unfav $+1 \times$ perm fav $+1.5 \times$ variable $+1.5 \times 0.5 \times$ wind (0.540)
Combination $3 \quad 0.925 \times 1.35 \times$ perm unfav $+1 \times$ perm fav $+1.5 \times 0.7 \times$ variable $+1.5 \times$ wind (0.509)

The following output relates to combination 1

Reduction factor for slenderness and eccentricity about the major axis-Section 6.1.2.2
Design bending moment top or bottom of column
$M_{i d b}=a b s\left(\gamma_{f G v} \times G_{k} \times e_{G b}+\gamma_{\mathrm{fQv}} \times Q_{k} \times e_{Q b}\right)=0 \mathrm{kNm}$
Design vertical load at top or bottom of column
$N_{\text {idb }}=\operatorname{abs}\left(\gamma_{\mathrm{fGv}} \times G_{k}+\gamma_{\mathrm{fQv}} \times \mathrm{Q}_{\mathrm{k}}\right)=\mathbf{1 8 8 . 2 5} \mathrm{kN}$
Initial eccentricity - cl.5.5.1.1
$\mathrm{e}_{\text {init }}=\mathrm{h}_{\text {eff }} / 450=7.8 \mathrm{~mm}$
Conservativley assume moment due to wind load at the top of the column is equal to that at mid height

Design moment due to horizontal load
$\mathrm{M}_{\mathrm{Edb}}=\mathbf{0} \mathrm{kNm}$
Eccentricity due to horizontal load
$\mathrm{e}_{\mathrm{hb}}=0.0 \mathrm{~mm}$
Eccentricity at top or bottom of column - eq.6.5
$\mathrm{e}_{\mathrm{ib}}=\max \left(\mathrm{M}_{\mathrm{idb}} / \mathrm{N}_{\mathrm{idb}}+\mathrm{e}_{\mathrm{hb}}+\mathrm{e}_{\text {init, }}, 0.05 \times \mathrm{b}\right)=\mathbf{2 2 . 0} \mathbf{~ m m}$
$\Phi_{\mathrm{ib}}=\max \left(1-2 \times \mathrm{e}_{\mathrm{ib}} / \mathrm{b}, 0\right)=0.9$
$\alpha_{\text {mdb }}=1.0$
$M_{m d b}=\alpha_{m d b} \times \operatorname{abs}\left(\gamma_{f G v} \times G_{k} \times e_{G b}+\gamma_{f Q v} \times Q_{k} \times e_{Q b}\right)=0 \mathrm{kNm}$
$\mathbf{N}_{\mathrm{mdb}}=\gamma_{\mathrm{fGv}} \times \mathbf{G}_{\mathrm{k}}+\gamma_{\mathrm{fQv}} \times \mathbf{Q}_{\mathrm{k}}+\gamma_{\mathrm{fGv}} \times \mathrm{t} \times \mathrm{b} \times \gamma \times \mathrm{h} / 2=196.483 \mathrm{kN}$
$\mathrm{e}_{\mathrm{hmb}}=0.0 \mathrm{~mm}$
$e_{m b}=M_{m d b} / N_{m d b}+e_{\text {hmb }}+e_{\text {init }}=7.8 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{kb}}=0.0 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{mkb}}=\max \left(\mathrm{e}_{\mathrm{mb}}+\mathrm{e}_{\mathrm{kb}}, 0.05 \times \mathrm{b}\right)=22.0 \mathrm{~mm}$
$\mathrm{A}_{1 \mathrm{~b}}=1-2 \times \mathrm{e}_{\mathrm{mkb}} / \mathrm{b}=0.9$
$K_{E}=1000$
$E=K_{E} \times f_{k}=6468 \mathrm{~N} / \mathrm{mm}^{2}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF pport@planningapplications.com 07922 148701	Project Masonry Columns 440x440mm High Newton Concrete Blocks				Job no.	
	The Old Coach House - Dylan \& Poppy					
	Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 20 / 06 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|l\|} \hline \text { Checked date } \\ 20 / 06 / 2023 \end{array}$	Approved by SB	Approved date 20/06/2023

Slenderness - eq.G. 4
From eq.G. 3
Reduction factor at middle of column - eq.G. 1
Reduction factor for slenderness and eccentricity
$\lambda_{b}=\left(h_{\text {eff }} / b\right) \times \sqrt{ }\left(f_{k} / E\right)=\mathbf{0 . 2 5 2}$
$\mathrm{u}_{\mathrm{b}}=\left(\lambda_{\mathrm{b}}-0.063\right) /\left(0.73-1.17 \times \mathrm{e}_{\mathrm{mkb}} / \mathrm{b}\right)=\mathbf{0 . 2 8 1}$
$\Phi_{m b}=\max \left(A_{1 b} \times e^{-\left(u_{b} \times u_{b}\right) / 2}, 0\right)=0.865$
$\Phi_{\mathrm{b}}=\min \left(\Phi_{\mathrm{ib}}, \Phi_{\mathrm{mb}}\right)=0.865$

Reduction factor for slenderness and eccentricity about the minor axis - Section 6.1.2.2
Design bending moment top or bottom of column
$M_{\text {idt }}=\operatorname{abs}\left(\gamma_{\mathrm{fGv}} \times \mathrm{G}_{\mathrm{k}} \times \mathrm{e}_{\mathrm{Gt}}+\gamma_{\mathrm{fQv}} \times \mathrm{Q}_{\mathrm{k}} \times \mathrm{e}_{\mathrm{Qt}}\right)=0 \mathrm{kNm}$
Design vertical load at top or bottom of column
$N_{\text {idt }}=\operatorname{abs}\left(\gamma_{f G v} \times G_{k}+\gamma_{f Q v} \times Q_{k}\right)=188.25 \mathrm{kN}$
Initial eccentricity - cl.5.5.1.1
$\mathrm{e}_{\text {init }}=\mathrm{h}_{\text {eff }} / 450=7.8 \mathrm{~mm}$
Conservativley assume moment due to wind load at the top of the column is equal to that at mid height
Design moment due to horizontal load
$\mathrm{M}_{\mathrm{Edt}}=\mathbf{0} \mathrm{kNm}$
Eccentricity due to horizontal load
$\mathrm{e}_{\mathrm{ht}}=0.0 \mathrm{~mm}$
Eccentricity at top or bottom of column - eq.6.5
$e_{\text {it }}=\max \left(M_{\text {idt }} / N_{\text {idt }}+e_{\text {ht }}+e_{\text {init, }}, 0.05 \times t\right)=\mathbf{2 2 . 0} \mathbf{~ m m}$
Reduction factor top or bottom of column - eq.6.4
$\Phi_{\text {it }}=\max \left(1-2 \times e_{i t} / t, 0\right)=0.9$
Ratio of top and middle mnts due to eccentricity
Design bending moment at middle of column
Design vertical load at middle of column
$\alpha_{\text {mdt }}=1.0$
$M_{m d t}=\alpha_{m d t} \times \operatorname{abs}\left(\gamma_{\mathrm{fGv}} \times \mathrm{G}_{\mathrm{k}} \times \mathrm{e}_{\mathrm{Gt}}+\gamma_{\mathrm{fQv}} \times \mathrm{Q}_{\mathrm{k}} \times \mathrm{e}_{\mathrm{Qt}}\right)=0 \mathrm{kNm}$
$\mathrm{N}_{\text {mdt }}=\gamma_{\mathrm{fGv}} \times \mathrm{G}_{\mathrm{k}}+\gamma_{\mathrm{fQv}} \times \mathrm{Q}_{\mathrm{k}}+\gamma_{\mathrm{fGv}} \times \mathrm{t} \times \mathrm{b} \times \gamma \times \mathrm{h} / 2=196.483 \mathrm{kN}$
Eccentricity due to horizontal load
$\mathrm{e}_{\mathrm{hmt}}=0.0 \mathrm{~mm}$
Eccentricity middle of column due to loads - eq.6.7 $e_{m t}=M_{m d t} / N_{m d t}+e_{h m t}+e_{\text {init }}=7.8 \mathrm{~mm}$
Eccentricity at middle of column due to creep
Eccentricity at middle of column - eq.6.6
$\mathrm{e}_{\mathrm{kt}}=0.0 \mathrm{~mm}$

From eq.G. 2
$e_{m k t}=\max \left(e_{m t}+e_{k t}, 0.05 \times t\right)=22.0 \mathrm{~mm}$

Short term secant modulus of elasticity factor
Modulus of elasticity - cl.3.7.2
$\mathrm{A}_{1 \mathrm{t}}=1-2 \times \mathrm{e}_{\mathrm{mkt}} / \mathrm{t}=0.9$
$\mathrm{K}_{\mathrm{E}}=1000$

Slenderness - eq.G. 4
$\mathrm{E}=\mathrm{K}_{\mathrm{E}} \times \mathrm{f}_{\mathrm{k}}=6468 \mathrm{~N} / \mathrm{mm}^{2}$

From eq.G. 3
$\lambda_{t}=\left(h_{\text {eff }} / t\right) \times \sqrt{ }\left(f_{k} / E\right)=0.252$

Reduction factor at middle of column - eq.G. 1
$u_{t}=\left(\lambda_{t}-0.063\right) /\left(0.73-1.17 \times e_{m k t} / t\right)=0.281$

Reduction factor for slenderness and eccentricity
$\Phi_{m t}=\max \left(\mathrm{A}_{1 \mathrm{t}} \times \mathrm{e}_{\mathrm{e}} \mathrm{e}^{-\left(\mathrm{u}_{\mathrm{t}} \times \mathrm{u}_{\mathrm{t}}\right) / 2}, 0\right)=0.865$
$\Phi_{\mathrm{t}}=\min \left(\Phi_{\mathrm{it}}, \Phi_{\mathrm{mt}}\right)=\mathbf{0 . 8 6 5}$
Columns subjected to mainly vertical loading - Section 6.1.2

Design value of the vertical load
Design compressive strength of masonry
Vertical resistance of column - eq.6.2
Utilisation
$\mathrm{N}_{\mathrm{Ed}}=\max \left(\mathrm{N}_{\mathrm{idb}}, \mathrm{N}_{\mathrm{mdb}}, \mathrm{N}_{\mathrm{idt}}, \mathrm{N}_{\mathrm{mdt}}\right)=196.483 \mathrm{kN}$
$\mathrm{f}_{\mathrm{d}}=\mathrm{f}_{\mathrm{k}} / \gamma_{\mathrm{Mc}}=\mathbf{2} .156 \mathrm{~N} / \mathrm{mm}^{2}$
$N_{R d}=\min \left(\Phi_{t}, \Phi_{b}\right) \times t \times b \times f_{d}=361.123 \mathrm{kN}$
$\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{Rd}}=0.544$
PASS - Design vertical resistance exceeds applied design vertical load

Use high compressive strength concrete blocks for columns (10KN or greater) and have steel beam bearing of 200 mm or greater. No high Newton padstone will be required as per calculations.

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 1 (2 No. $305 \times 165 x 46 \mathrm{kgUB}$) bolted togther min 1.3 m				Job no.241	
	Calcs for	The Old Coach House - Dylan \& Poppy			Start page no./Revision 1	
	Calcs by SB	Calcs date 19/06/2023	Checked by DB	Checked date 19/06/2023	Approved by SB	Approved date 19/06/2023

STEEL BEAM ANALYSIS \& DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project BEAM 1 (2 No. $305 \times 165 x 46 \mathrm{kgUB}$) bolted togther min 1.3 m				Job no.241	
	The Old Coach House - Dylan \& Poppy				Start page no./Revision 2	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 19 / 06 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{\|l} \hline \text { Checked date } \\ \text { 19/06/2023 } \end{array}$	Approved by SB	$\begin{array}{\|c} \hline \text { Approved date } \\ 19 / 06 / 2023 \end{array}$

Support conditions

Support A
Support B
Applied loading

Beam loads

Load combinations

Load combination 1
$R_{\text {B_Permanent }=81.6 \mathrm{kN}, ~}^{\text {d }}$
$\mathrm{R}_{\mathrm{B}_{-} \text {Variable }}=\mathbf{5 2 . 8} \mathrm{kN}$
$\begin{array}{ll}\text { Section type } & 2 \times \text { UB } 305 \times 165 \times 46 \text { (BS4-1) } \\ \text { Steel grade } & \text { S275 }\end{array}$
$\begin{array}{ll}\text { Section type } & 2 \times \text { UB } 305 \times 165 \times 46 \text { (BS4-1) } \\ \text { Steel grade } & \text { S275 }\end{array}$
Unfactored permanent load reaction at support B
Unfactored variable load reaction at support B

Section details

Support A

Support B

$M_{\text {max }}=249.9 \mathrm{kNm}$
$M_{s 1 \text { _seg1_max }}=187.5 \mathrm{kNm}$
$M_{\text {s1_seg2_max }}=249.9 \mathrm{kNm}$
$M_{\text {s1_seg3_max }}=249.9 \mathrm{kNm}$
$\mathrm{M}_{\text {s1_seg4_max }}=187.5 \mathrm{kNm}$
$V_{\text {max }}=189.3 \mathrm{kN}$
$V_{\text {s1_seg1_max }}=189.3 \mathrm{kN}$
$V_{\text {s1_seg2_max }}=94.7 \mathrm{kN}$
$V_{\text {s1_seg3_max }}=0 \mathrm{kN}$
$\mathrm{V}_{\text {s1_seg4_max }}=0 \mathrm{kN}$
$\delta_{\text {max }}=4.9 \mathrm{~mm}$
$R_{\mathrm{A}_{\mathrm{max}}}=189.3 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{_} \text {Permanent }}=81.6 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{\mathrm{B}} \text { Variable }}=\mathbf{5 2 . 8} \mathrm{kN}$
$R_{B_{B} \max }=189.3 \mathrm{kN}$

Permanent $\times 1.35$
Variable $\times 1.50$
Permanent $\times 1.35$
Variable $\times 1.50$
Permanent $\times 1.35$
Variable $\times 1.50$
$\mathrm{M}_{\text {min }}=\mathbf{0} \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg1_min }}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg2_min }}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg } 3 \text { _min }}=\mathbf{0} \mathrm{kNm}$
$M_{s 1 \text { _seg4_min }}=0 \mathrm{kNm}$
$V_{\text {min }}=-189.3 \mathrm{kN}$
$\mathrm{V}_{\mathrm{s} 1 \text { _seg1_min }}=0 \mathrm{kN}$
$V_{\text {s1_seg2_min }}=0 \mathrm{kN}$
$V_{s 1 \text { _seg3_min }}=-94.7 \mathrm{kN}$
$V_{\text {s1_seg4_min }}=-189.3 \mathrm{kN}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A} _ \text {min }}=189.3 \mathrm{kN}$
$R_{\mathrm{B}_{-} \min }=189.3 \mathrm{kN}$

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Permanent self weight of beam $\times 1$
Permanent full UDL $30 \mathrm{kN} / \mathrm{m}$
Variable full UDL $20 \mathrm{kN} / \mathrm{m}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 1 (2 No. $305 x 165 x 46 k g U B$) bolted togther min 1.3m				Job no.241	
	Calcs for	The Old Coach House - Dylan \& Poppy			Start page no./Revision 3	
	Calcs by SB	Calcs date 19/06/2023	Checked by DB	Checked date 19/06/2023	Approved by SB	Approved date 19/06/2023

EN 10025-2:2004-Hot rolled products of structural steels

Nominal thickness of element	$t=\max \left(t_{f}, t_{w}\right)=11.8 \mathrm{~mm}$
Nominal yield strength	$f_{y}=\mathbf{2 7 5} \mathrm{N} / \mathrm{mm}^{2}$
Nominal ultimate tensile strength	$f_{u}=\mathbf{4 1 0 ~ N} / \mathrm{mm}^{2}$
Modulus of elasticity	$E=\mathbf{2 1 0 0 0 0 ~ N} / \mathrm{mm}^{2}$

Partial factors - Section 6.1

Resistance of cross-sections
$\gamma_{\text {мо }}=1.00$
Resistance of members to instability
$\gamma_{\mathrm{M} 1}=1.00$
Resistance of tensile members to fracture
$\gamma_{\mathrm{M} 2}=1.10$

Lateral restraint

Span 1 has lateral restraint at supports plus $1320 \mathrm{~mm}, 2640 \mathrm{~mm}$ and
3960 mm

Effective length factors

Effective length factor in major axis
$\mathrm{K}_{\mathrm{y}}=1.000$
Effective length factor in minor axis
$K_{z}=1.000$
Effective length factor for torsion
$K_{\text {Lt.A }}=1.000$
$K_{\text {Lt } . \mathrm{B}}=1.000$

Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{f}_{\mathrm{y}}\right]=0.92
$$

Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section

$$
\begin{aligned}
& c=d=265.2 \mathrm{~mm} \\
& \alpha=\min \left(\left[\mathrm{h} / 2+N_{E d} /\left(2 \times N \times t_{w} \times f_{y}\right)-\left(t_{f}+r\right)\right] / c, 1\right)=0.653 \\
& c / t_{w}=42.8 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad \text { Class } 1
\end{aligned}
$$

Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section
$\mathrm{c}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \times \mathrm{r}\right) / 2=70.6 \mathrm{~mm}$
c $/ \mathrm{t}_{\mathrm{f}}=6.5 \times \varepsilon<=9 \times \varepsilon$
Class 1

Check shear - Section 6.2.6
Height of web
$h_{w}=h-2 \times t_{f}=283 \mathrm{~mm}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 1 (2 No. $305 \times 165 \times 46 \mathrm{~kg} \mathrm{UB}$) bolted togther min 1.3 m				Job no.241	
	Calcs for				Start page no./Revision4	
	Calcs by SB	Calcs date 19/06/2023	Checked by DB	Checked date 19/06/2023	Approved by SB	Approved date 19/06/2023

Shear area factor
$\eta=1.000$
$h_{w} / t_{w}<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
Design shear force
$\mathrm{V}_{\mathrm{Ed}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=189.3 \mathrm{kN}$
Shear area - cl 6.2.6(3)
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=2253 \mathrm{~mm}^{2}$
Design shear resistance -cl 6.2.6(2)
$V_{c, R d}=V_{p l, R d}=N \times A_{v} \times\left(f_{y} / \sqrt{ }[3]\right) / \gamma_{M 0}=715.5 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force
Check bending moment at span 1 segment 2 major ($y-y$) axis - Section 6.2.5
Design bending moment $\quad M_{E d}=\max \left(a b s\left(M_{s 1 _ \text {seg2_max }}\right)\right.$, $\left.a b s\left(M_{s 1_{-} s e g 2 _m i n}\right)\right)=249.9 \mathrm{kNm}$
Design bending resistance moment - eq 6.13
$M_{c, R d}=M_{p l, R d}=N \times W_{\text {pl. } y} \times f_{y} / \gamma_{m o}=396 \mathrm{kNm}$
Slenderness ratio for lateral torsional buckling
Correction factor - Table 6.6
$\mathrm{k}_{\mathrm{c}}=0.969$
$\mathrm{C}_{1}=1 / \mathrm{k}_{\mathrm{c}}{ }^{2}=1.065$
Curvature factor
$g=\sqrt{ }\left[1-\left(I_{z} / I_{y}\right)\right]=0.954$
Poissons ratio
$v=0.3$
Shear modulus
$\mathrm{G}=\mathrm{E} /[2 \times(1+\mathrm{v})]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
Unrestrained length
$\mathrm{L}=1.0 \times \mathrm{L}_{\mathrm{s} 1 _ \text {seg } 2}=1320 \mathrm{~mm}$
Elastic critical buckling moment
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} /\left(L^{2} \times g\right) \times \sqrt{ }\left[I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right]=$
1819.9 kNm

Slenderness ratio for lateral torsional buckling
$\bar{\lambda}_{\text {LT }}=\sqrt{ }\left(W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{M}_{\text {cr }}\right)=\mathbf{0 . 3 3}$
Limiting slenderness ratio
$\bar{\lambda}_{L T, 0}=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}<\bar{\lambda}_{L T, O}$-Lateral torsional buckling can be ignored
Design resistance for buckling - Section 6.3.2.1
Buckling curve - Table 6.5
b
Imperfection factor - Table 6.3
$\alpha_{\text {LT }}=0.34$
Correction factor for rolled sections
$\beta=0.75$
LTB reduction determination factor
$\phi_{L T}=0.5 \times\left[1+\alpha_{L T} \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T}{ }^{2}\right]=\mathbf{0 . 5 2 9}$
LTB reduction factor - eq 6.57
$\chi \angle T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T^{2}}\right)\right], 1,1 / \bar{\lambda}_{L T^{2}}\right)=\mathbf{1 . 0 0 0}$
Modification factor
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=0.991$
$\chi_{L T, \bmod }=\min \left(\chi_{L T} / f, 1\right)=1.000$
$M_{b, R d}=\chi_{L T}, \bmod \times N \times W_{\text {pl. } .} \times f_{y} / \gamma_{M 1}=396 \mathrm{kNm}$
PASS - Design buckling resistance moment exceeds design bending moment
Check compression - Section 6.2.4

Design compression force
Design resistance of section - eq 6.10
Slenderness ratio for major ($y-y$) axis buckling
Critical buckling length
Critical buckling force
Slenderness ratio for buckling - eq 6.50
$\mathrm{N}_{\mathrm{Ed}}=300 \mathrm{kN}$
$N_{c, R d}=N_{p l, R d}=N \times A \times f_{y} / \gamma_{\mathrm{M} 0}=3231 \mathrm{kN}$
$\mathrm{L}_{\text {cr, }, \mathrm{y}}=\mathrm{L}_{\mathrm{s} 1} \times \mathrm{K}_{\mathrm{y}}=\mathbf{5 2 8 0} \mathbf{~ m m}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{y}}=\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}}{ }^{2}=7359.2 \mathrm{kN}$
$\bar{\lambda}_{y}=\sqrt{ }\left[A \times f_{y} / N_{c r, y}\right]=\mathbf{0 . 4 6 9}$

Design resistance for buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
a
$\alpha_{y}=0.21$
$\phi_{y}=0.5 \times\left[1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right]=0.638$
$\chi_{y}=\min \left(1 /\left[\phi_{y}+\sqrt{ }\left(\phi_{y}{ }^{2}-\bar{\lambda}_{y}{ }^{2}\right)\right], 1\right)=0.934$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 1 (2 No. $305 \times 165 \times 46 \mathrm{kgUB}$) bolted togther min 1.3 m				Job no.241	
	Calcs for \quad The Old Coach House - Dylan \& Poppy				Start page no./Revision 5	
	Calcs by SB	$\begin{array}{\|l} \hline \text { Calcs date } \\ 19 / 06 / 2023 \end{array}$	Checked by DB	$\begin{array}{\|l\|} \hline \text { Checked date } \\ \text { 19/06/2023 } \end{array}$	Approved by SB	$\begin{array}{\|c} \hline \text { Approved date } \\ \hline 19 / 06 / 2023 \end{array}$

Design buckling resistance - eq 6.47
$N_{b, y, R d}=\chi_{y} \times N \times A \times f_{y} / \gamma_{M 1}=3017 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force
Slenderness ratio for minor (z-z) axis buckling
Critical buckling length
$\mathrm{L}_{\mathrm{cr}, \mathrm{z}}=\mathrm{L}_{\mathrm{s} 1 \text { _seg } 2} \times \mathrm{K}_{\mathrm{z}}=1320 \mathrm{~mm}$
Critical buckling force
$N_{c r, z}=\pi^{2} \times E_{S E C 3} \times I_{z} / L_{c r, z}{ }^{2}=10654.1 \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50
$\bar{\lambda}_{z}=\sqrt{ }\left[A \times f_{y} / N_{c r, z}\right]=\mathbf{0 . 3 8 9}$
Design resistance for buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
b
$\alpha_{z}=0.34$
$\phi_{z}=0.5 \times\left[1+\alpha_{z} \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right]=0.608$
$\chi_{z}=\min \left(1 /\left[\phi_{z}+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right], 1\right)=0.930$
$\mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{z} \times \mathrm{N} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=3005.7 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force
Check torsional and torsional-flexural buckling - Section 6.3.1.4
Torsional buckling length factor
$K_{T}=1.00$
Torsional buckling length
$L_{\text {cr, }, T}=\max \left(L_{s 1}, L_{s 1}{ }_{\text {seg } 2}\right) \times K_{T}=5280 \mathrm{~mm}$
Distance from shear centre to centroid in y axis
Distance from shear centre to centroid in z axis
Radius of gyration
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{z}_{0}=0.0 \mathrm{~mm}$
$\mathrm{i}_{0}=\sqrt{ }\left[\mathrm{i}_{\mathrm{y}}{ }^{2}+\mathrm{i}_{\mathrm{z}}{ }^{2}\right]=135.6 \mathrm{~mm}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}_{0}{ }^{2} \times\left[\mathrm{G} \times \mathrm{I}_{\mathrm{t}}+\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{w}} / \mathrm{L}_{\mathrm{cr}, \mathrm{T}^{2}}\right]=1763.1 \mathrm{kN}$
$\beta_{\mathrm{T}}=1-\left(\mathrm{y}_{0} / \mathrm{i}_{0}\right)^{2}=1.000$
Torsion factor

Elastic critical torsional-flexural buckling force

$$
N_{c r, T F}=N_{c r, y} /\left(2 \times \beta_{T}\right) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / i_{0}\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=\mathbf{1 7 6 3 . 1} \mathrm{kN}
$$

Elastic critical buckling force
$\mathrm{N}_{\mathrm{cr}}=\min \left(\mathrm{N}_{\mathrm{cr}, \mathrm{T}}, \mathrm{N}_{\mathrm{cr}, \mathrm{TF}}\right)=\mathbf{1 7 6 3 . 1} \mathrm{kN}$
Slenderness ratio for torsional buckling - eq 6.52
$\bar{\lambda}_{T}=\sqrt{ }\left[A \times f_{y} / N_{c r}\right]=0.957$
Design resistance for buckling - Section 6.3.1.1
Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
$\alpha_{T}=0.34$
$\phi_{T}=0.5 \times\left[1+\alpha_{T} \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}_{T^{2}}\right]=1.087$
$\chi_{T}=\min \left(1 /\left[\phi_{T}+\sqrt{ }\left(\phi_{T}{ }^{2}-\bar{\lambda}_{T}{ }^{2}\right)\right], 1\right)=\mathbf{0 . 6 2 4}$
$\mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi_{\mathrm{T}} \times \mathrm{N} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=2017.3 \mathrm{kN}$
PASS-Design buckling resistance exceeds design compression force

Combined bending and axial force - Section 6.2.9

Bending and axial force check - eq $6.33 \& 6.34 \quad N_{E d}<=\min \left(0.25 \times N_{p l, R d}, 0.5 \times N \times h_{w} \times t_{w} \times f_{y} / \gamma_{m 0}\right)$
No allowance on the plastic moment need to be accounted for due to the effect of axial force
Check combined bending and compression-Section 6.3.3
Equivalent uniform moment factors - Table B. 3

$$
\begin{aligned}
& M_{\mathrm{hy}}=0 \mathrm{kNm} \\
& M_{\mathrm{sy}}=\mathbf{2 5 0} \mathrm{kNm} \\
& \psi_{\mathrm{y}}=\mathbf{1 . 0 0 0} \\
& \alpha_{\mathrm{hy}}=M_{\mathrm{hy}} / M_{\mathrm{sy}}=\mathbf{0 . 0 0 0} \\
& C_{\mathrm{my}}=0.95+0.05 \times \alpha_{\mathrm{hy}}=\mathbf{0 . 9 5 0} \\
& M_{\mathrm{hz}}=\mathbf{0} \mathrm{kNm} \\
& M_{\mathrm{sz}}=\mathbf{0} \mathrm{kNm} \\
& \psi_{z}=\mathbf{1 . 0 0 0}
\end{aligned}
$$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	ProjectBEAM 1 (2 No. $305 \times 165 \times 46 \mathrm{kgUB}$) bolted togther min 1.3 m				Job no.241	
	Calcs for The Old Coach House - Dylan \& Poppy				Start page no./Revision 6	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 19 / 06 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 19 / 06 / 2023 \end{array}$	Approved by SB	$\begin{array}{\|c} \hline \text { Approved date } \\ \hline 19 / 06 / 2023 \end{array}$

$$
\begin{aligned}
& C_{m z}=0.6+0.4 \times \psi_{\mathrm{z}}=1.000 \\
& M_{\text {hLT }}=\mathbf{2 5 0} \mathrm{kNm} \\
& M_{\text {sLT }}=\mathbf{2 3 4} \mathrm{kNm} \\
& \psi_{\text {LT }}=\mathbf{0 . 7 5 0} \\
& \alpha_{\text {sLT }}=M_{\text {sLT }} / M_{\text {hLT }}=\mathbf{0 . 9 3 7} \\
& C_{m L T}=\max \left(0.2+0.8 \times \alpha_{\text {sLT }}, 0.4\right)=\mathbf{0 . 9 5 0}
\end{aligned}
$$

Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic resistance to normal force Interaction factors
0.989

Interaction formulae - eq 6.61 \& eq 6.62

$$
\begin{aligned}
& M_{R k}=N \times W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}}=396 \mathrm{kNm} \\
& \mathrm{~N}_{\mathrm{Rk}}=\mathrm{N} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}}=3231 \mathrm{kN} \\
& \mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left[1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right]=0.975 \\
& \mathrm{k}_{\mathrm{zy}}=\min \left(0.6+\bar{\lambda}_{z}, 1-0.1 \times \bar{\lambda}_{z} \times \mathrm{N}_{\mathrm{Ed}} /\left(\left(\mathrm{C}_{\mathrm{mLT}}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right)=
\end{aligned}
$$

$$
\begin{aligned}
& N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma_{M 1}\right)+k_{y y} \times M_{E d} /\left(\chi_{L T} \times M_{R k} / \gamma_{M 1}\right)=\mathbf{0 . 7 1 5} \\
& N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma_{M 1}\right)+k_{z y} \times M_{E d} /\left(\chi_{L T} \times M_{R k} / \gamma_{M 1}\right)=\mathbf{0 . 7 2 4}
\end{aligned}
$$

PASS - Combined bending and compression checks are satisfied

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads
Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{\text {s } 1} / 360=14.7 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=4.868 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

Loading details
Self weight
Permanent action $\quad S W=w \times 9.81 / 1000=0.452 \mathrm{kN} / \mathrm{m}$
Load 1: UDL - Sloping roof, 0° to 30°
Permanent action $\quad \mathrm{G} 1=1.15 \mathrm{kN} / \mathrm{m}^{2} \times 3.21 \mathrm{~m}=3.69 \mathrm{kN} / \mathrm{m}$
Variable action Q1 $=0.75 \mathrm{kN} / \mathrm{m}^{2} \times 3.21 \mathrm{~m}=2.41 \mathrm{kN} / \mathrm{m}$
Load 2: UDL - Flat roof, with no permanent access
Permanent action $\quad \mathrm{G} 2=1 \mathrm{kN} / \mathrm{m}^{2} \times 1.25 \mathrm{~m}=1.25 \mathrm{kN} / \mathrm{m}$
Variable action Q2 $=0.75 \mathrm{kN} / \mathrm{m}^{2} \times 1.25 \mathrm{~m}=0.938 \mathrm{kN} / \mathrm{m}$
Load 3: UDL -460 mm thick stone wall $\times 2500 \mathrm{~mm}$ tall
Permanent action $\quad \mathrm{G} 3=10 \mathrm{kN} / \mathrm{m}^{2} \times 2.5 \mathrm{~m}=25 \mathrm{kN} / \mathrm{m}$
Variable action Q3 $=0 \mathrm{kN} / \mathrm{m}^{2} \times 2.5 \mathrm{~m}=0 \mathrm{kN} / \mathrm{m}$
Reactions

	Permanent (unfactored) Variable (unfactored)	Total (unfactored)	Total (factored)
Left reaction	80.2 kN	8.83 kN	89.1 kN
Right reaction	80.2 kN	8.83 kN	89.1 kN

