Tekla	Project	Job no. 2023-7459				
PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF	Calcs for Mr Shy Iqbal -	93 Bishopton R	Start page no./Revision 1			
support@planningapplications.com 07922 148 701	Calcs by SB	Calcs date 16/10/2023	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023

STEEL COLUMN AND BASE PLATE DESIGN (EN1993)

Tedds calculation version 1.0.02

Tedds calculation version 1.1.04

STEEL COLUMN DESIGN

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Design summary

Description	Unit	Provided	Required	Utilisation	Result
Shear resistance (y-y)	kN	113	50	0.443	PASS
Axial compression	kN	307	100	0.326	PASS
Buckling in compression	kN	184	100	0.544	PASS

Partial factors - Section 6.1

Resistance of cross-sections	γ _{M0} = 1
Resistance of members to instability	γ _{M1} = 1

Resistance of cross-sections in tension to fracture γ_{M2} = 1.1

CHS 76.1x5.0 (Tata Steel Celsius) Diameter, d, 76.1 mm Mass of section, Mass, 8.8 kg/m Section thickness, t, 5 mm Area of section, A, 1117 mm² Radius of gyration about y-axis, i_y, 25.2 mm Radius of gyration about y-axis, i_y, 25.2 mm Elastic section modulus about y-axis, W_{el,y}, 18639 mm³ Elastic section modulus about y-axis, W_{el,y}, 18639 mm³ Plastic section modulus about y-axis, W_{el,y}, 25318 mm³ Plastic section modulus about z-axis, W_{pl,y}, 25318 mm³ Second moment of area about y-axis, I_y, 709220 mm⁴ Second moment of area about z-axis, I_y, 709220 mm⁴

Column details	
Column section	CHS 76.1x5.0
Steel grade	S275
Yield strength	f _y = 275 N/mm ²
Ultimate strength	f _u = 410 N/mm ²
Modulus of elasticity	E = 210 kN/mm ²
Poisson's ratio	v = 0.3
Shear modulus	G = E / $[2 \times (1 + v)]$ = 80.8 kN/mm ²
Column geometry	
System length for buckling - Major axis	L _y = 2000 mm
System length for buckling - Minor axis	L _z = 2000 mm
The column is not part of a sway frame in the direc	tion of the minor axis
The column is not part of a sway frame in the direc	tion of the major axis
Column loading	
Axial load	N _{Ed} = 100 kN (Compression)

🚝 Tekla	Project	Front Bay - Columns/ton & bottom plates 2023-7459						
PlanningApplications.com		Tom Bay - Column		plates	202	Devision		
Summer House, Upper Court Road Woldingham Surrey CR3 7BF	Mr Shy Iqba	al - 93 Bishopton R	d Stockton-on-	-Tees TS18 4PG	Start page no./	2		
support@planningapplications.com 07922 148 701	Calcs by SB	Calcs date 16/10/2023	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023		
Major axis moment at end 1 - B	ottom	M _{y,Ed1} = 0.0	kNm					
Major axis moment at end 2 - T	ор	$M_{y,Ed2} = 0.0$	kNm					
Minor axis moment at end 1 - B	ottom	$M_{z,Ed1} = 0.0$	kNm					
Minor axis moment at end 2 - T	ор	$M_{z,Ed2} = 0.0$	kNm					
Major axis shear force		V _{y,Ed} = 50 k	N					
Minor axis shear force		$V_{z,Ed} = 0 kN$	1					
Buckling length for flexural b	uckling - Maj	or axis						
End restraint factor		K _y = 1.200						
Buckling length		$L_{cr_y} = L_y \times$	K _y = 2400 mm					
Buckling length for flexural b	uckling - Min	or axis						
End restraint factor		K _z = 1.200						
Buckling length		$L_{cr_z} = L_z \times$	K _z = 2400 mm					
Section classification (Table	5.2)							
Coefficient depending on fy		ε = √(235 N	1/mm ² / f _y) = 0 .9	924				
Ratio of d/t		ratio = d / t = 15.22						
Limit of d/t for class 1 section		Limit ₁ = 50	× ε² = 42.73					
Limit of d/t for class 2 section		Limit ₂ = 70	× ε² = 59.82					
Limit of d/t for class 3 section		Limit ₃ = 90	× ε² = 76.91					
					The sec	tion is class 1		
Resistance of cross section (CI. 6.2)							
Shear - Major axis (cl. 6.2.6)								
Design shear force		$V_{y,Ed} = 50.0$	KN	2				
Shear area		$A_{vy} = 2 \times A$	$/\pi = 711 \text{ mm}$	12				
Plastic shear resistance		$v_{pl,y,Rd} = A_{vy} \times (t_y / N(3)) / \gamma_{M0} = 112.9 \text{ kN}$						
			V _{y,Ed} / V _{pl,y,Rd} = 0.443					
	r_{ASS} - snear resistance exceeds the design snear force $V_{v,Ed} \le 0.5 \times V_{pl,v,Rd}$ - No reduction in f _v required for bending/axial force							
Compression (cl. 6.2.4)		- ,,	<i>p</i> ,,,,,,,	,,				
Design force		N _{Ed} = 100 k	<n< td=""><td></td><td></td><td></td></n<>					
Design resistance		$N_{cPd} = N_{plPd} = A \times f_v / \gamma_{M0} = 307 \text{ kN}$						
		NEd / No. Bd	= 0.326					
		PASS - The c	ompression a	lesign resistance	e exceeds th	e design force		
Buckling resistance (cl. 6.3)								
Yield strength for buckling resis	tance	f _y = 275 N/r	mm²					
Flexural buckling - Major axis	5							
Elastic critical buckling force		$N_{cr,y} = \pi^2 \times$	$E \times I_y / L_{cr_y^2} = 1$	255 kN				
Non-dimensional slenderness		$\overline{\lambda}_{y} = \sqrt{(A \times f_{y} / N_{cr,y})} = 1.097$						
Buckling curve (Table 6.2)		а						
Imperfection factor (Table 6.1)		α_y = 0.21						
Parameter Φ		Φ_y = 0.5 ×	[1 + $\alpha_y \times$ ($\overline{\lambda}_y$ -	$(0.2) + \overline{\lambda}_y^2] = 1.19$	6			
Reduction factor		χ _y = min(1.	0, 1 / [Φ _y + √(Φ	$(y^2 - \overline{\lambda}y^2)]) = 0.598$				
Design buckling resistance		$N_{b,y,Rd} = \chi_y$	\times A \times f _y / γ_{M1} =	183.7 kN				

Tekla	Project	Job no.					
Tedds	Fror	2023-7459					
PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF	Calcs for Mr Shy Iqbal - 93 Bishopton Rd Stockton-on-Tees TS18 4PG					Start page no./Revision 3	
support@planningapplications.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
07922 148 701	SB	16/10/2023	DB	16/10/2023	SB	16/10/2023	

	N _{Ed} / N _{b,y,Rd} = 0.544
	PASS - The flexural buckling resistance exceeds the design axial load
Flexural buckling - Minor axis	
Elastic critical buckling force	$N_{cr,z} = \pi^2 \times E \times I_z / L_{cr_z^2} = 255 \text{ kN}$
Non-dimensional slenderness	$\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 1.097$
Buckling curve (Table 6.2)	a
Imperfection factor (Table 6.1)	α _z = 0.21
Parameter Φ	$\Phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2] = 1.196$
Reduction factor	$\chi_z = \min(1.0, 1 / [\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)}]) = 0.598$
Design buckling resistance	$N_{b,z,Rd}$ = $\chi_z \times A \times f_y$ / γ_{M1} = 183.7 kN
	N _{Ed} / N _{b,z,Rd} = 0.544
	PASS - The flexural buckling resistance exceeds the design axial load
Minimum buckling resistance	
Minimum buckling resistance	$N_{b,Rd} = min(N_{b,y,Rd}, N_{b,z,Rd}) = 183.7 \text{ kN}$
	$N_{Ed} / N_{b,Rd} = 0.544$
	PASS - The axial load buckling resistance exceeds the design axial load

COLUMN TOP & BASE PLATE DESIGN

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009, and EN1993-1-8:2005 incorporating Corrigenda December 2005, September 2006 and July 2009, and the UK national annex Tedds calculation version 2.0.06

Design summary

Description	Unit	Design	Resistance	Utilisation	Result
Axial	kN	100	126.1	0.79	PASS
Weld shear	kN	50	226	0.22	PASS

🐙 Tekla	Project Front Bay - Columns/top & bottom plates				Job no.	8-7459			
PlanningApplications.com		in bay - columns		14165	2020				
Summer House, Upper Court Road	Mr Shy Iqbal -	93 Bishopton R	d Stockton-on-Te	ees TS18 4PG	Start page no./R	4			
support@planningapplications.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date			
07922 148 701	SB	16/10/2023	DB	16/10/2023	SB	16/10/2023			
Design forees									
Design axial force (compression)	N _{E4} = 100 k	N						
Design shear force)	V _{rd} = 50 kN							
Design moment		M _{Ed} = 0 kNr	n						
Column Dotoilo		Eu •							
			5.0						
Depth		D = 76.1 mm	n						
		t = 5 mm							
		t – 3 mm							
Base plate details									
Length		h _p = 300 mr	n						
Width		b _p = 600 mn	n						
l hickness		t _p = 10 mm							
Column eccentricity in x-axis		e _{bpx} = -25 m	m						
Bolt/Anchor details									
Number of anchors LHS		n ₁ = 2							
Edge distance in x-axis		e _{x1} = 50 mm	1						
Edge distance in y-axis		e _{y1} = 50 mm	ı						
Number of anchors RHS		n ₂ = 2							
Edge distance in x-axis		e _{x2} = 50 mm							
Edge distance in the y-axis		e _{y2} = 50 mm	e _{y2} = 50 mm						
Anchor diameter		d _{a,b} = 12 mn	n M12 Grade 8.	8					
Foundation details									
Bottom edge distance		c ₁ = 600 mn	n						
Right edge distance		c ₂ = 100 mn	n						
Left edge distance		c ₃ = 100 mm	n						
Top edge distance		c ₄ = 600 mn	c ₄ = 600 mm						
Foundation depth		t _{fnd} = 500 m	t _{fnd} = 500 mm						
Concrete details									
Concrete strength class		C12/15							
Characteristic compressive cylin	der strength	f _{ck} = 12 N/m	m²						
Characteristic compressive cube	e strength	f _{ck,cube} = 15	N/mm²						
Partial factor for concrete		$\gamma_c = 1.50$							
Compressive strength coefficien	t	α_{cc} = 0.85							
Design compressive concrete st	rength	$f_{cd} = \alpha_{cc} \times (f_{cd})$	_{ck} / γ _c) = 6.8 N/m	m²					
Steel details									
Base plate steel grade		S275							
Base plate nominal yield strengt	h	f _{yp_plt} = 275	N/mm²						
Base plate nominal ultimate tens	sile strength	f _{u_plt} = 410 N	l/mm²						
Column steel grade		S275							
Column nominal yield strength	f _{yp_col} = 275 N/mm²								
Column nominal ultimate tensile	ile strength $f_{u_{col}} = 410 \text{ N/mm}^2$								
Partial safety factor cross sectio	ns	γ _{M0} = 1.00							
Partial safety factor welds		γ _{M2} = 1.25							
Foundation bearing strength -	EN1992-1-1 S	ection 6.7							
Loaded area		$A_{c0} = b_p \times h_p$	a = 150000 mm ²						

Tekla Tedds	Project F	Project Job no. Front Bay - Columns/top & bottom plates 2023-7459							
PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF support@planningapplications.com 07922 148 701	Calcs for Mr Shy Iqba	al - 93 Bishopton R	Start page no./Revision 5						
	Calcs by SB	Calcs date 16/10/2023	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023			
Design distribution width		b _{p,dist} = 833	b _{p dist} = 833.3 mm						
Design distribution length Maximum design distribution area		h _{p,dist} = 500 mm							
		$A_{c1} = b_{p,dist}$	$A_{c1} = b_{p,dist} \times h_{p,dist} = 416667 \text{ mm}^2$						
Concentrated design resistance	e force	$F_{Rdu} = Min(A)$	$F_{Rdu} = Min(A_{c0} \times f_{cd} \times \sqrt{(A_{c1} / A_{c0})}, 3 \times f_{cd} \times A_{c0}) = 1700 \text{ kN}$ $\beta_{j} = 0.67$						
Foundation joint material coeffi	cient	$\beta_{j} = 0.67$							
Design bearing strength of the	joint	$f_{jd} = \beta_j \times F_{Rd}$	f_{jd} = $\beta_j \times F_{Rdu}$ / ($b_p \times h_p$) = 7.56 N/mm ²						
Base plate compressive resis	stance								
Additional bearing width		$c = t_p \times \sqrt{(f_y)}$	$c = t_p \times \sqrt{(f_{yp_plt} / (3 \times f_{jd} \times \gamma_{M0}))} = 34.8 mm$						
Effective bearing area		A _{eff} = 1668	A _{eff} = 16687 mm ²						
Design compressive resistance		$N_{c,Rd} = f_{jd} \times A_{eff} = 126.1 \text{ kN}$							
		PASS - De	sign compre	ssive resistance e	exceeds appli	ed axial load			
Shear weld									

Force in shear weld Weld leg length Weld throat size Length of weld Correlation factor for fillet welds - Table 4.1 Design shear strength - Cls 4.5.3.3(3) Design resistance per unit length - Cls 4.5.3.3(2) Design resistance

$F_{w,v,Ed} = 50 \text{ kN}$
s _w = 6 mm
a _w = 1 / √(2) × s _w = 4.2 mm
$L_{w,v} = \pi \times D = 239.1 \text{ mm}$
$\beta_w = 0.85$
$f_{vw,d} = f_{u_plt} / (\sqrt{3} \times \beta_w \times \gamma_{M2}) = 222.8 \text{ N/mm}^2$
$f_{w,Rd} = f_{vw,d} \times a_w = 945.2 \text{ N/mm}$
$F_{w,v,Rd} = f_{w,Rd} \times L_{w,v} = 226 \text{ kN}$
PASS - Available strength of weld exceeds force in weld