Woldingham SURREY CR3 7BF 0203294947707922148701 support@planningapplications.com

Project 3 Low Street Sutton in Ashfield Nottingham NG17 1DH				$\begin{aligned} & \text { Job no. } \\ & \text { Pa-2023-7459 } \end{aligned}$	
Calcs for	Mr Sonu Nazran	BEAM 1-	mm		1
Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 09 / 08 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 08 / 08 / 2023 \end{array}$	Approved by SB	Approved date $09 / 08 / 2023$

STEEL BEAM ANALYSIS \& DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Load Combination 1 (shown in proportion)

Project 3 Low Street Sutton in Ashfield Nottingham NG17 1DH				Job no.Pa-2023-7459	
Calcs for	Mr Sonu Nazran	BEAM 1 -	mm	Start page	vision 2
Calcs by SB	Calcs date 09/08/2023	Checked by DB	Checked date 08/08/2023	Approved by SB	Approved date 09/08/2023

Support conditions

Support A	Vertically restrained
Rotationally free	
Support B	Vertically restrained
	Rotationally free

Applied loading

Beam loads
Permanent self weight of beam $\times 1$
Variable full UDL $70 \mathrm{kN} / \mathrm{m}$
Permanent full UDL $170 \mathrm{kN} / \mathrm{m}$

Load combinations

Load combination 1

Support A	Permanent $\times 1.35$
	Variable $\times 1.50$
	Permanent $\times 1.35$
Support B	Variable $\times 1.50$
	Permanent $\times 1.35$
	Variable $\times 1.50$

Analysis results

Maximum moment
Maximum moment span 1 segment 1
Maximum moment span 1 segment 2
Maximum moment span 1 segment 3
Maximum moment span 1 segment 4
Maximum shear
Maximum shear span 1 segment 1
$M_{\text {max }}=172.7 \mathrm{kNm}$
$M_{s 1 \text { _seg1_max }}=128.2 \mathrm{kNm}$
$M_{\text {s1_seg2_max }}=172.7 \mathrm{kNm}$
$M_{\text {s1_seg3_max }}=172.7 \mathrm{kNm}$
$M_{\text {s1_seg4_max }}=133.3 \mathrm{kNm}$
$\mathrm{V}_{\text {max }}=340.3 \mathrm{kN}$
$V_{\text {s1_seg1_max }}=340.3 \mathrm{kN}$
Maximum shear span 1 segment 2
$V_{\text {s1_seg2_max }}=\mathbf{1 7 2 . 7} \mathrm{kN}$
Maximum shear span 1 segment 3
$V_{\text {s1_seg3_max }}=\mathbf{5 k N}$
Maximum shear span 1 segment 4
$\mathrm{V}_{\mathrm{s} 1 \text { _seg4_max }}=0 \mathrm{kN}$
Deflection segment 5
$\delta_{\text {max }}=0.9 \mathrm{~mm}$
Maximum reaction at support A
Unfactored permanent load reaction at support A
Unfactored variable load reaction at support A
Maximum reaction at support B
Unfactored permanent load reaction at support B
Unfactored variable load reaction at support B
$\mathrm{R}_{\mathrm{A} _ \text {max }=340.3 \mathrm{kN}}$
$\mathrm{R}_{\mathrm{A}_{-} \text {Permanent }}=173.1 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A} \text { _Variable }}=71.1 \mathrm{kN}$
$R_{B_{_} \max }=340.3 \mathrm{kN}$

Section details

Section type
$R_{B_{-} \text {Permanent }}=173.1 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B} \text { _Variable }}=71.1 \mathrm{kN}$
$2 \times$ UB $254 \times 102 \times 28$ (BS4-1)

$$
\mathrm{M}_{\min }=0 \mathrm{kNm}
$$

$$
\mathrm{M}_{\mathrm{s} 1 _ \text {seg } 1 _ \text {min }}=0 \mathrm{kNm}
$$

$$
\mathrm{M}_{\mathrm{s} 1 \text { _seg2_min }}=0 \mathrm{kNm}
$$

$$
\mathrm{M}_{\mathrm{s} 1 \text { _seg } 3 \text { _min }}=0 \mathrm{kNm}
$$

$$
\mathrm{M}_{\mathrm{s} 1 \text { _seg } 4 _ \text {min }}=0 \mathrm{kNm}
$$

$$
V_{\min }=-340.3 \mathrm{kN}
$$

$$
\mathrm{V}_{\mathrm{s} 1 _ \text {seg1_min }}=\mathbf{0} \mathrm{kN}
$$

$$
\mathrm{V}_{\mathrm{s} 1 _ \text {seg2_min }}=\mathbf{0} \mathrm{kN}
$$

$$
\mathrm{V}_{\mathrm{s} 1 _\operatorname{seg} 3-\min }=-162.6 \mathrm{kN}
$$

$$
\mathrm{V}_{\text {s1_seg4_ } \min }=-340.3 \mathrm{kN}
$$

$$
\delta_{\min }=0 \mathrm{~mm}
$$

$$
\mathrm{R}_{\mathrm{A} _\min }=340.3 \mathrm{kN}
$$

$$
\mathrm{R}_{\mathrm{B} _\min }=340.3 \mathrm{kN}
$$

$R_{B_{_} \min }=340.3 \mathrm{kN}$

S275
Steel grade

Project 3 Low Street Sutton in Ashfield Nottingham NG17 1DH				Job no.Pa-2023-7459	
Calcs for	Mr Sonu Nazran	BEAM 1 -	mm	Start page	evision 3
Calcs by SB	Calcs date 09/08/2023	Checked by DB	Checked date 08/08/2023	Approved by SB	Approved date 09/08/2023

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element
Nominal yield strength
Nominal ultimate tensile strength
Modulus of elasticity
$\mathrm{t}=\max \left(\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}\right)=10.0 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{2 1 0 0 0 0} \mathrm{N} / \mathrm{mm}^{2}$

Partial factors - Section 6.1

Resistance of cross-sections
$\gamma_{\mathrm{MO}}=1.00$
Resistance of members to instability
$\gamma_{M 1}=1.00$
Resistance of tensile members to fracture
$\gamma_{\mathrm{M} 2}=1.10$

Lateral restraint

Span 1 has lateral restraint at supports plus $500 \mathrm{~mm}, 1000 \mathrm{~mm}$ and
1500 mm

Effective length factors

Effective length factor in major axis
$K_{y}=1.000$
Effective length factor in minor axis
$\mathrm{K}_{\mathrm{z}}=1.000$
Effective length factor for torsion
$K_{L T . A}=1.000$
$K_{L T .}=1.000$

Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{f} y\right]=0.92
$$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{d}=\mathbf{2 2 5 . 2} \mathrm{mm}$
c $/ \mathrm{t}_{\mathrm{w}}=38.7 \times \varepsilon<=72 \times \varepsilon$
Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section
$\mathrm{c}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \times \mathrm{r}\right) / 2=\mathbf{4 0 . 3} \mathrm{mm}$
$\mathrm{c} / \mathrm{t}_{\mathrm{f}}=4.4 \times \varepsilon<=9 \times \varepsilon$
Class 1

Check shear - Section 6.2.6
Height of web
$h_{w}=h-2 \times t_{f}=240.4 \mathrm{~mm}$
Shear area factor
$\eta=1.000$
$h_{w} / t_{w}<72 \times \varepsilon / \eta$

Project 3 Low Street Sutton in Ashfield Nottingham NG17 1DH				Job no.Pa-2023-7459	
Calcs for	Mr Sonu Nazran	BEAM 1 -		Start page no	vision 4
Calcs by SB	Calcs date 09/08/2023	Checked by DB	Checked date 08/08/2023	Approved by SB	$\begin{aligned} & \text { Approved date } \\ & 09 / 08 / 2023 \end{aligned}$

Shear buckling resistance can be ignored

Design shear force
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)
$V_{E d}=\max \left(\operatorname{abs}\left(V_{\text {max }}\right), a b s\left(V_{\text {min }}\right)\right)=340.3 \mathrm{kN}$
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=1779 \mathrm{~mm}^{2}$
$\mathrm{V}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{V}_{\mathrm{pl}, \mathrm{Rd}}=\mathrm{N} \times \mathrm{A}_{\mathrm{v}} \times\left(\mathrm{f}_{\mathrm{y}} / \sqrt{ }[3]\right) / \gamma_{\mathrm{M} 0}=\mathbf{5 6 4 . 9} \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force
Combined bending and shear - Section 6.2.8
Reduction factor - cl.6.2.8(3)
$\rho_{\mathrm{v}}=\left[\left(2 \times \mathrm{V}_{\mathrm{Ed}} / \mathrm{V}_{\mathrm{pl}, \mathrm{Rd}}\right)-1\right]^{2}=\mathbf{0 . 0 4 2}$
Check bending moment at span 1 segment 3 major ($y-y$) axis - Section 6.2.5
Design bending moment
Design bending resistance moment - eq 6.13
$M_{E d}=\max \left(a b s\left(M_{s 1 \text { _seg } 3 _m a x}\right), \operatorname{abs}\left(M_{s 1 _ \text {seg } 3 _m i n}\right)\right)=172.7 \mathrm{kNm}$
$M_{c, R d}=M_{p l, R d}=N \times\left[\left(W_{\text {pl. }}-t_{w} \times h^{2} / 4\right)+\left(t_{w} \times h^{2} / 4\right) \times\left(1-\rho_{v}\right)\right] \times f_{y} / \gamma_{M 0}=$
191.6 kNm

Slenderness ratio for lateral torsional buckling
Correction factor - Table 6.6
$\mathrm{k}_{\mathrm{c}}=0.972$
$C_{1}=1 / k_{c}{ }^{2}=1.058$
Curvature factor
Poissons ratio
Shear modulus
Unrestrained length
Elastic critical buckling moment

Slenderness ratio for lateral torsional buckling Limiting slenderness ratio
$g=\sqrt{ }\left[1-\left(I_{z} / I_{y}\right)\right]=0.977$
$v=0.3$
$G=E /[2 \times(1+v)]=\mathbf{8 0 7 6 9} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{L}=1.0 \times \mathrm{L}_{\text {s1_seg } 3}=\mathbf{5 0 0} \mathbf{~ m m}$
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} /\left(L^{2} \times g\right) \times \sqrt{ }\left[I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right]=$
2038.6 kNm
$\bar{\lambda}_{L T}=\sqrt{ }\left(\left[\left(W_{\text {pl. }}-t_{w} \times h^{2} / 4\right)+\left(t_{w} \times h^{2} / 4\right) \times\left(1-\rho_{v}\right)\right] \times f_{y} / M_{c r}\right)=0.217$
$\bar{\lambda}_{L T, 0}=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}<\bar{\lambda}_{L T, 0}$-Lateral torsional buckling can be ignored
PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{s 1} / 360=5.6 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\text {min }}\right)\right)=0.92 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

