Tekla Tedds	Project Rear Extension - Opening to rear elevation Calcs for Mr S Payne 12 Bennett Way Guildford Surrey GU4 7TN				Job no. 2023-7459a	
PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF					Start page no./F	Revision 1
support@planningapplications.com 07922 148 701	Calcs by S Baker	Calcs date 26/09/2023	Checked by D Baker	Checked date 26/09/2023	Approved by S Baker	Approved date 26/09/2023

Tedds calculation version 1.0.04

STEEL MASONRY SUPPORT

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Steel member details

Torsion beam	UB 203x133x30
Masonry support plate	User
Steel grade of support plate	S355
Design strength of support plate	p _{ysb} = 355 N/mm ²
Modulus of elasticity	E = 205000 N/mm ²
Constant	$\epsilon = \sqrt{(275 \text{N/mm}^2 / p_{ysb})} = 0.880$
Length of plate beyond beam	I _h = 125 mm
Total length of plate	I _{plate} = 250 mm
Thickness of plate	t _{sb} = 6 mm
Width of main beam	B _{mb} = 134 mm
Area of plate	A_{sbu} = $t_{sb} \times I_{plate}$ = 1500.0 mm^2
Distance from weld position to CoG	c_{yysb} = I_h / 2 - (I_{plate} - I_h) / 2 = $\boldsymbol{0}$ mm
Supported materials detail	
Density of masonry on main beam	ρ _{m,mb} = 8.0 kN/m ³
Width of masonry on main beam	b _{mmb} = 100 mm
Height of masonry on main beam	h _{mmb} = 2400 mm
Eccentricity of main beam material	e _{mb} = 40 mm
Add dead force main beam (not from masonry)	P _{Gaddmb} = 0.0 kN/m
Add live force main beam (not from masonry)	P _{Qaddmb} = 0.0 kN/m
Density of masonry on support beam	ρ _{m,sb} = 2.0 kN/m ³
Width of masonry on support beam	b _{msb} = 100 mm
Height of masonry on support beam	h _{msb} = 2600 mm

Tekla	^{roject} Rear	Extension - Ope	ening to rear ele	vation	Job no. 2023	3-7459a	
PlanningApplications.com Calcs for			·			Revision	
Summer House, Upper Court Road	Mr S Payne	12 Bennett Wa	y Guildford Surr	ey GU4 7TN		2	
support@planningapplications.com 07922 148 701	^{alcs by} S Baker	Calcs date 26/09/2023	Checked by D Baker	Checked date 26/09/2023	Approved by S Baker	Approved date 26/09/2023	
Add dead force support beam (not	from masonry	y) P _{Gaddsb} = 0 .0	0 kN/m				
Add live force support beam (not f	rom masonry)	P _{Qaddsb} = 0.0	0 kN/m				
Geometry							
Cavity width		c = 70 mm					
Supported width of masonry		$d_m = I_h + e_m$	_b - c = 95 mm				
Biaxial stress effects in the plate	e (SCI-P-110)						
Maximum overall bending moment	t	M _x = 10.6 k	Nm				
Dist to NA combined section (CoG	torsion beam) $y_{e,all} = (D_{mb})$	+ t_{sb}) × A_{sbu} / (2 :	\times (A _{mb} + A _{sbu})) =	30 mm		
Second moment of area of combin	ed section	$I_{xx,all} = (I_{xxmb})$	+ $A_{mb} \times y_{e,all}^2$)+ $A_{mb} \times y_{e,all$	$A_{sbu} \times (D_{mb} / 2 +$	$t_{sb} \; / \; 2$ - $y_{e,all})^2$	= 4115 cm ⁴	
Elastic section modulus of combin	ed section	$Z_{xx,all} = I_{xx,all}$	/ (D _{mb} / 2 + t _{sb} -	y _{e,all}) = 518.22 c	m³		
Section modulus of plate		$Z_{xx,plate} = 1m$	$n \times t_{sb}^2$ / (6 \times 1m)) = 6.00 cm ³ /m			
Eccentricity of support beam mase	onry	e ₁ = 80 mm					
Force of masonry on support plate		$P_1 = (b_{msb} \times$	$h_{\text{msb}} \times \rho_{\text{m,sb}} \textbf{+} \textbf{P}_{0}$	$Gaddsb$) × γ_{fG} + P_{Qs}	$_{addsb} \times \gamma_{fQ} = 0.2$	7 kN/m	
Bending at heel		$M_{x,plate} = P_1$	× e1 = 0.1 kNm/	m			
Moment capacity of plate		$M_c = 1.2 \times 2$	$Z_{x,plate} \times p_{ysb} = 2.6$	6 kNm/m			
			PASS	- Design stren	gth exceeds	stress at heel	
Longitudinal stress due to overall b	pending	$\sigma_1 = M_x / Z_x$	$\sigma_1 = M_x / Z_{xx,all} = 20.4 \text{ N/mm}^2$				
Constant relating to Von Mises curve		$c_{fp} = (4 \times p_y)$	$c_{fp} = (4 \times p_{ysb}^2 - 3 \times \sigma_1^2)^{0.5} = 709.1 \text{ N/mm}^2$				
Transverse bending stress ratio limit		$\alpha_{\rm ts} = (c_{\rm fp}^2 - c_{\rm fp})^2$	σ_1^2) / (2 × c _{fp} × p	_{ysb}) = 0.998			
Transverse bending stress ratio		$\alpha_{is} = M_{x,plate}$	$\alpha_{is} = M_{x,plate} / M_c = 0.023$				
		PASS - 1	Fransverse ben	ding stress rat	io less than a	allowable limit	
Deflection at toe							
Unfactored force on support angle		$P_{1SLS} = b_{msb}$	$P_{\text{1SLS}} = b_{\text{msb}} \times h_{\text{msb}} \times \rho_{\text{m,sb}} + P_{\text{Gaddsb}} + P_{\text{Qaddsb}} = \textbf{0.5} \text{ kN/m}$				
Distance from weld to load position	ו	a _m = e ₁ = 80	0 mm				
Length of load resultant to edge of	plate	$b_m = I_h - e_1 =$	= 45 mm				
Dist from weld to load position as i	atio of length	$a_1 = a_m / (a_m)$	h + b _m) = 0.640				
Effective second moment of inertia	1	$I_{eff_def} = t_{sb}^3$	$I_{eff_{def}} = I_{sb}^{2} / 12 = 18000 \text{ mm}^{2}/\text{m}$				
Deflection at toe		$\delta = (a_{1^2} \times (3$	$\delta = (a_1^2 \times (3 - a_1) / 6) \times (P_{1SLS} \times (a_m + b_m)^3) / (E_{S5950} \times I_{eff_def}) = 0.04 \text{ mm}$				
Deflection limit		δ _{lim} = 2.00 r	nm				
			PA	SS - Deflection	is within sp	ecified criteria	
Weld details - assume a full leng	th weld and	that the plate a	cts as a proppe	ed cantilever w	ith the prop	at the weld	
position and the fixed end at the	e centre of the	e torsion beam	_				
		$s_{weld} = 6 mn$	n xx 40				
		$a_{weld} = 1/\sqrt{2}$	$2) \times S_{weld} = 4.2 \text{ m}$		4 4) - 0 0 1-01	I	
Shear force at weld position		$R_A = P_1 \times m$	$aX((1 + (3 \times e_1)))$	$/(2 \times B_{mb}/2)),$	(1.4) = 2.0 km	m	
Maximum possible force in plate		$R_p = (I_h + B_f)$	$(h_{mb}) \times t_{sb} \times p_{ysb} = $	551.5 KN			
Longitudinal shear between beam and plate		$R_1 = 2 \times R_p$	$R_1 = 2 \times R_p / L = 239.8 \text{ kN/m}$				
Horizontal shear between beam and plate		$\kappa_h = P_1 \times e_1$	$1 / (S_{weld} / 2 + t_{sb})$	(∠) = 9.7 kN/m			
Resultant weld force		$\kappa_{weld} = (\kappa_A^2)$	$R_{weld} = (R_A^2 + R_l^2 + R_h^2)^{0.5} = 0.240 \text{ kN/mm}$				
Capacity of full length wold		$p_{weld} - 220.$		kN/mm			
Capacity of full leftgul weld		Pc,weld = awel	$a \times pweld = 0.333$	NN/IIIII	de recultant	force on wold	
_		r	ASS - Capacity		รื่นจายจนเเสมไ	ionce on weld	
Torsional loading ULS				. .	_		
Loading of support beam masonry		$W_{1ULS} = (h_{ms})$	$b \times b_{msb} \times \rho_{m,sb}$ +	$P_{Gaddsb}) \times \gamma_{fG} +$	$P_{Qaddsb} \times \gamma_{fQ} =$	U.73 kN/m	

 $w_{\text{2ULS}} = (h_{\text{mmb}} \times b_{\text{mmb}} \times \rho_{\text{m,mb}} + P_{\text{Gaddmb}}) \times \gamma_{\text{fG}} + P_{\text{Qaddmb}} \times \gamma_{\text{fQ}} = \textbf{2.69} \text{ kN/m}$

Loading of main beam masonry

🚝 Tekla	Project	ar Extension On	oning to roor of	ovation	Job no.	74500	
PlanningApplications com	Rea	ar Extension - Ope	ening to rear er	evalion	2023	5-7459a	
Summer House, Upper Court Road	Calcs for Mr S Payı	ne 12 Bennett Wa	y Guildford Sui	rrey GU4 7TN	Start page no./I	Revision 3	
support@planningapplications.com 07922 148 701	Calcs by S Baker	Calcs date 26/09/2023	Checked by D Baker	Checked date 26/09/2023	Approved by S Baker	Approved date 26/09/2023	
Self weight of support beam		W _{3ULS} = A _{sbu}	$1 \times \rho_{sb} \times \gamma_{fG} = 0.$. 16 kN/m			
Torsional loading SLS							
Loading of support beam masonry	y	$w_{1SLS} = h_{mst}$	$b_{\text{msb}} \times b_{\text{msb}} \times \rho_{\text{m,sb}} + b_{\text{msb}}$	+ P _{Gaddsb} + P _{Qaddsb}	= 0.52 kN/m		
Loading of main beam masonry		$w_{2SLS} = h_{mm}$	$b \times b_{mmb} \times \rho_{m,mb}$	+ P _{Gaddmb} + P _{Qado}	_{imb} = 1.92 kN/	m	
Self weight of support beam		$W_{3SLS} = A_{sbu}$	$\times \rho_{\text{sb}}$ = 0.12 kM	N/m			
Eccentricities							
Distance to shear centre of main l	beam	$e_{0mb} = 0 mn$	n				
Eccentricity of support beam mas	onry	$e_{1mb} = (B_{mb})$	+ b _{msb}) / 2 + c ·	- e _{mb} = 147 mm			
Eccentricity of main beam mason	ry	$e_{2mb} = (B_{mb})$	- b _{mmb}) / 2 - e _{mt}	₀ = -23 mm			
Eccentricity of support beam		$e_{3mb} = B_{mb}$ /	2 + c _{yysb} = 67 i	mm			
Torsional effects							
Applied torque (III S)		T _{aurs} = abs	(W1111 & X P1mb +	Wallis X Pamb + Wa		06 kNm/m	
Total torque (ULS)		$T = T + v_0 \times v_0$	(W 0 0 0 0 0 0 0 0 0				
Applied torque (SLS)		$T_q = T_{qULS}$		W	······································	04 kNm/m	
Total torque (SLS)		$T_{qsLS} = ADS$ $T_{qu} = T_{qSLS}$	$T_{qu} = T_{qSLS} \times L = 0.18 \text{ kNm}$				
STEEL BEAM TORSION DESIG	N						
In accordance with BS5950-1:2	000 incorpo	rating Corrigend	um No.1				
					Tedds calcula	tion version 2.0.02	
Section details							
Section type		UB 203x13	3x30				
Steel grade		S355					
Design stength		$p_{yw} = p_y = 3$	55 N/mm ²				
Constant		ε = √(275 N	$1/mm^2 / p_y) = 0.$	880			
Geometry - Beam unrestrained Effective span	against late	ral-torsional buc L = 4600 m	kling between m	i supports.			
Length of segment for LT buckling Compression flanges laterally res) trained	L _{LT} = 5000	mm				
Both flanges free to rotate on plan	1						
Effective length for LT buckling		$L_{E_{LT}} = L_{LT}$	< 1.0 = 5000 m	m			
Loading - Torsional loading co	mprises only	y full-length unif	ormly distribu	ted load(s)			
Internal forces & moments on n	nember und	er factored loadi	ng for uls des	ign			
Applied shear force		F _{vy} = 9.2 kN	1				
Maximum bending moment		$M_{LT} = M_x =$	10.58 kNm				
Applied torque		T _q = 0.26 k	Nm				
Minor axis bending moment		$M_y = 0 kNm$	1				
Compression force		$F_c = 0 \text{ kN}$					
Equivalent uniform moment fac EUM factor (Cl. 4.3.6.6 and T18)	tors	m _{LT} = 1.000)				
Torsional deflection parameters	S						
Beam is torsion fixed and warping	free at each	end. (as defined	in SCI-P-057 s	ection 2.1.6) - Ap	pendix B case	e 4	
Dist along the beam for first derivative	ative of twist	$z_1 = 0 \text{mm}$		- /			
Dist along the beam for second do	erivative of tv	vist $z_2 = 1$	L / 2 = 2300 mr	m			
First derivative of angle of twist		 φ'₁ =	T _a / (G × J) × a	$ / L \times [L^2 / (2 \times a)]$	× (1 / L - 2 × :	z ₁ / L ²) +	
		sinh(z ₁ / a)	- tanh(L / (2 × a	a)) × cosh(z ₁ / a)]	× 1 rads = 9.2	, 29×10 ⁻³ rads/m	

🚝 Tekla	Project Job no.					
Tedds	Rear Extension - Opening to rear elevation 2023-7459a			7459a		
PlanningApplications.com	Calcs for				Start page no./R	evision
Woldingham Surrey CR3 7BF	Mr S Payn	e 12 Bennett Wa	y Guildford Surr	ey GU4 7TN		4
support@planningapplications.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
07922 148 701	5 Baker	26/09/2023	D Baker	26/09/2023	5 Baker	26/09/2023
Third derivative of angle of twist		d'''1 =	$T_a / (G \times J \times a^2)$) × a/L × [sinh(z ₁	/ a) - tanh(I /	(2 × a)) ×
······ · ······		cosh(z₁ / a)	1 × 1 rads = -6.9	8×10 ⁻³ rads/m ³	, ., .,	())
Angle of twist		$\phi_2 = \overline{}$	Γ _α × a / (G × J) ×	$a / L \times [L^2 / (2 \times$	a^{2}) × (z_{2} / L - 2	z_2^2 / L^2 +
		$\cosh(z_2/a)$	- tanh(L / (2 × a	$(1) \times \sinh(z_2/a)$ -	11×1 rads =	0.013 rads
Second derivative of angle of tw	ist	φ" ₂ =	$T_{\alpha} / (G \times J \times a)$	× a / L × [cosh(z;	/ a) - tanh(L /	(2 × a)) ×
		$\sinh(z_2/a)$	- 11 × 1 rads = -	5.62×10 ⁻³ rads/m	2	())
		01111(22 / 0)				
Design parameters		\downarrow = $aba(\downarrow)$	- 0.012 rada			
		$\varphi = abs(\varphi_2)$	- 0.013 Taus	la (m		
First derivative of ϕ		$\phi = abs(\phi_1)$	$= 9.29 \times 10^{\circ}$ ad	15/111 		
Second derivative of φ		$\phi = abs(\phi z)$	$(2) = 5.62 \times 10^{-1}$	us/m-		
I hird derivative of ϕ		φ ^m = abs(φ ^m	$(1) = 6.98 \times 10^{-9}$ ra	ads/m°		
Section classification						
		b / T = 7.0				
		d / t = 26.9	0			
		$r_{1s} = min(1)$	$.0, \max(-1.0, F_{c})$	$(d \times t \times p_{yw})) =$	0.000	
		$\Gamma_{2s} = F_c / (A_g$	$g \times p_{yw}$) = 0.000	Saati	an alaasifiaat	ion io plaatia
				Section		ion is plastic
Shear capacity (parallel to y-a	xis)					
Design shear force	2)	$F_{vy} = 9.2 \text{ KN}$		D 1-N1		
Design shear resistance (Cl. 4.2.3)		P _{vy} = 0.6 ×	$p_y \times A_{vy} = 281.3$	9 KIN		Pass Shoar
						Fass - Sileai
Moment capacity (x-axis)		M 40.0 l	N 1			
Design bending moment		М _× = 10.6 к				
Moment capacity	4054)	$W_{cxu} = p_y \times Q_y$	5 _x = 111.6 KINIII	7) - 444 C kNm	_	
Moment capacity low shear (CI.	4.2.5.1)	w _{cx} = min(p	$y \times S_x, 1.2 \times p_y \times$	$\langle Z_x \rangle = 111.6 \text{ kinfine}$	l docian hon	dina momont
		F		αρατιγ εκτεευ	s design ben	ung moment
Lateral torsional buckling	-					
Effective length for lateral torsion	hai buckling	$L_{E_{LT}} = 5000$	J mm			
Sienderness ratio		$\lambda = L_{E_{LT}} / r_{y}$	/=158			
Elango ratio		u = 0.661				
		y = 21.5				
Slenderness factor		x = 21.0 y = 1/(1 + 1)	$0.05 \times (\lambda / x)^2)^{0.2}$	²⁵ = 0 72		
Batio - cl 4 3 6 9		$\beta_{\rm m} = 1.0 = 1$		- 0.72		
Equivalent slenderness $- cl 4.36$	\$ 7	$\beta_{W} = 1.0 = 1$	 、	n		
Limiting slendernes – Anney B2	2	$\lambda_{\rm LI} = 0.4 \times 10^{-10}$	$\sqrt{\pi^2}$ Eccase (n)	- 30		
Euler stress	.2	$h_{L0} = 0.4 \times$	$\sqrt{(\pi \times 10^{-2} - 201)}$	- 50		
Luici succo Derry factor		$p_{\rm E} = \pi^{-1} \times E_{\rm S5950} / \Lambda_{\rm LT}^{-1} = 201 \text{ IN/IIIII}^{-1}$				
Ferry lactor		$\eta_{L1} = \max(n + t)$	$1.0 \times (1.11 - 1.10)$	$P = 327542800.0^{\circ}$	20	
Bending strength		$\varphi_{L} = (p_y + (p_y +$	$1(1 - 1) \wedge p_E/2$	p = (27) = 138 M	mm^2	
Buckling resistance moment		$\mathbf{p}_{D} = \mathbf{p}_{E} \times \mathbf{p}_{y}$ $\mathbf{M}_{e} = \mathbf{p}_{e} \times \mathbf{P}$	$(\Psi_{L}) = 43.5 \text{ kNm}$	$P = \langle Py \rangle = 130 M$		
Max moment doverning buckling	ı resistance	$w_b = \mu_b \times S_x = 43.3$ KIVIII M = 10.6 kNm				
Equiv uniform moment factor for	LTB	$m_{17} = 1.00$				
		M _b / m _{LT} = 4	I3.5 kNm			

📕 Tekla	Project				Job no.	
Tedds	Rear Extension - Opening to rear elevation				2023-7459a	
PlanningApplications.com	Calcs for				Start page no./Re	evision
Summer House, Upper Court Road Woldingham Surrey CR3 7BF	Mr S Payne 12 Bennett Way Guildford Surrey GU4 7TN					5
support@planningapplications.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
07922 148 701	S Baker	26/09/2023	D Baker	26/09/2023	S Baker	26/09/2023
Summer House, Upper Court Road Woldingham Surrey CR3 7BF support@planningapplications.com 07922 148 701	Mr S Payne ^{Calcs by} S Baker	12 Bennett Way Calcs date 26/09/2023	y Guildford Surre ^{Checked by} D Baker	Checked date 26/09/2023	Approved by S Baker	5 Approved dat 26/09/202

Buckling under combined bending & torsion -SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member. Span factor L/a = 4.73 Angle of twist φ = **0.013** rads Second derivative of ϕ **φ'' = 5.62×10⁻³** rads/m² Induced minor axis moment $M_{yt} = M_x \times \phi / 1 \text{ rad} = 0.14 \text{ kNm}$ Normal stress at flange tip due to M_{vt} $\sigma_{byt} = M_{yt} / Z_y = 2 N/mm^2$ σ_w = $E_{\text{S5950}} \times W_{n0} \times \varphi^{\prime\prime}$ / 1 rad = 8 N/mm² Normal stress at flange tip due to warping Interaction index $i_b = M_x \times m_{LT} / M_b + (\sigma_{byt} + \sigma_w) / p_y \times (1 + 0.5 \times M_x \times m_{LT} / M_b) = 0.27$ Pass - Combined bending and torsion check satisfied

Local capacity under combined bending & torsion

For simplicity, a conservative check is applied using the maximum stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max. direct stress due to M _x	$\sigma_{bx} = M_x / Z_x = 38 \text{ N/mm}^2$
Combined stress - eqn 2.22	σ_{bx} + σ_{byt} + σ_w = 48 N/mm ²
Design strength	p _y = 355 N/mm ²

Pass - Local capacity

Combined shear stresses - SCI-P-057 section 2.3

For simplicity, a conservative check is applied using the maximum shear stresses due to each of the separate load effects, even though these do not necessarily all occur at the same section along the member.

Max shear stresses due to bending in web	$\tau_{bw} = F_{vy} \times Q_w / (I_x \times t) = 8 \text{ N/mm}^2$
Max shear stresses due to bending in flange	$\tau_{bf} = F_{vy} \times Q_f / (I_x \times T) = 2 N/mm^2$
Max shear stresses due to torsion in web	τ_{tw} = abs(G × t × ϕ ' / 1rad) = 5 N/mm ²
Max shear stresses due to torsion in flange	τ_{tf} = abs(G × T × ϕ ' / 1 rad) = 7 N/mm ²
Max shear stresses due to warping in flange	τ_{wf} = abs(-E_{S5950} \times S_{w1} \times $\phi^{\prime\prime\prime}$ / 1 rad / T) = 0 N/mm^2
Amp shear stress torsion & warping in web	$\tau_{vtw} = \tau_{tw} \times (1 + 0.5 \times M_x \times m_{LT} / M_b) = 5 \text{ N/mm}^2$
Amp shear stress torsion & warping in flange	τ_{vtf} = (τ_{tf} + τ_{wf}) × (1 + 0.5 × M _x × m _{LT} / M _b) = 8 N/mm ²

Combined shear stresses due to bending, torsion & warping:

		Pass - Combined shear stresses
Shear strength	$p_v = 0.6 \times p_y = 213 \text{ N/mm}^2$	
Combined shear stresses in flange	$\tau_f = \tau_{bf} + \tau_{vtf} = 10 \text{ N/mm}^2$	
Combined shear stresses in web	$\tau_w = \tau_{bw} + \tau_{vtw} = 13 \text{ N/mm}^2$	

Twist check

Deflection

Total applied torque (unfactored)	T _{qu} = 0.18 kNm
Maximum twist under sls loading	$\phi_{sis} = \phi \times T_{qu} / T_q = 0.53 \text{ deg}$
Twist limit	ϕ_{lim} = 1.00 deg

Pass - Twist

Maximum y-axis deflection	δ _{y_max} = 2.8 mm
Deflection limit - cl. 2.5.2	$\delta_{lim} = min(L/k_{\delta}, \delta_{lim_abs}) = 3.0 mm$

Pass - Deflection within specified limit

Tekla	Project				Job no.	
Tedds PlanningApplications.com Summer House, Upper Court Road Woldingham Surrey CR3 7BF support@planningapplications.com	Rear Extension - Opening to rear elevation				2023-7459a	
	Calcs for Mr S Payne 12 Bennett Way Guildford Surrey GU4 7TN				Start page no./Revision	
					6	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
07922 148 701	5 Baker	26/09/2023	DBaker	26/09/2023	5 Baker	26/09/2023