Project				$\begin{aligned} \hline \text { Job no. } & \\ & 2023-7459 \end{aligned}$	
Front Bay - Upper Structural Frame work					
Calcs for Mr Shy Iqbal - 93 Bishopton Rd Stockton-on-Tees TS18 4PG				Start page	vision 1
Calcs by SB	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 16 / 10 / 2023 \end{array}$	Checked by DB	$\begin{aligned} & \hline \text { Checked date } \\ & 16 / 10 / 2023 \end{aligned}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 16 / 10 / 2023 \end{array}$

STEEL BEAM ANALYSIS \& DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13
Calcs for Beam A, B, C - all 3 beams support loads and conditions are the same. Beam A 1750 mm long, Beam B 1000 mm long, Beam C 500 mm long. The calculations are based the longest beam, Beam A. All Beams PASS.

Project Front Bay - Upper Structural Frame work			Job no.2023-7459	
Calcs for Mr Shy Iqbal - 93 Bishopton	Stockton	es TS18 4PG	Start page	vision 2
Calcs by Calcs date SB $16 / 10 / 2023$	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023

Support conditions

Support A Support B Applied loading

Beam loads Permanent self weight of beam $\times 1$
Permanent full UDL 18 kN/m
Variable full UDL $7 \mathrm{kN} / \mathrm{m}$

Load combinations

Load combination 1

Support A	Permanent $\times 1.35$
	Variable $\times 1.50$
	Permanent $\times 1.35$
Support B	Variable $\times 1.50$
	Permanent $\times 1.35$
	Variable $\times 1.50$

Analysis results

Maximum moment	$\mathrm{M}_{\text {max }}=13.4 \mathrm{kNm}$	$\mathrm{M}_{\text {min }}=0 \mathrm{kNm}$
Maximum shear	$\mathrm{V}_{\text {max }}=30.7 \mathrm{kN}$	$V_{\text {min }}=-30.7 \mathrm{kN}$
Deflection	$\delta_{\text {max }}=0.3 \mathrm{~mm}$	$\delta_{\text {min }}=0 \mathrm{~mm}$
Maximum reaction at support A	$\mathrm{R}_{\mathrm{A}_{-} \max }=30.7 \mathrm{kN}$	$\mathrm{R}_{\mathrm{A}_{-} \text {min }}=30.7 \mathrm{kN}$
Unfactored permanent load reaction at support A	$\mathrm{R}_{\mathrm{A}_{-} \text {Permanent }}=15.9 \mathrm{kN}$	
Unfactored variable load reaction at support A	$\mathrm{R}_{\mathrm{A}_{-} \text {Variable }}=6.1 \mathrm{kN}$	
Maximum reaction at support B	$\mathrm{R}_{\mathrm{B}_{-} \max }=30.7 \mathrm{kN}$	$\mathrm{R}_{\mathrm{B}_{-} \text {min }}=30.7 \mathrm{kN}$
Unfactored permanent load reaction at support B	$\mathrm{R}_{\mathrm{B}_{-} \text {Permanent }}=15.9 \mathrm{kN}$	
Unfactored variable load reaction at support B	$\mathrm{R}_{\mathrm{B}_{-} \text {Variable }}=6.1 \mathrm{kN}$	
Section details		
Section type	UB 178x102x19 (BS4-1)	
Steel grade	S275	

EN 10025-2:2004-Hot rolled products of structural steels
Nominal thickness of element
$\mathrm{t}=\max \left(\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}\right)=7.9 \mathrm{~mm}$
Nominal yield strength
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
Nominal ultimate tensile strength
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
Modulus of elasticity
$\mathrm{E}=\mathbf{2 1 0 0 0 0 \mathrm { N } / \mathrm { mm } ^ { 2 } \mathrm { L }}$

Front Bay - Upper Structural Frame work			Job no. 20	-7459
Calcs for Mr Shy Iqbal - 93 Bishopton	Stockton	TS18 4PG	Start page n	vision 3
Calcs by Calcs date SB $16 / 10 / 2023$	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023

Partial factors - Section 6.1

Resistance of cross-sections
$\gamma_{\text {мо }}=1.00$
Resistance of members to instability
$\gamma_{\mathrm{M} 1}=1.00$
Resistance of tensile members to fracture
$\gamma_{\text {м } 2}=1.10$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis $\quad \mathrm{K}_{\mathrm{y}}=\mathbf{1 . 0 0 0}$
Effective length factor in minor axis $\quad \mathrm{K}_{\mathrm{z}}=\mathbf{1 . 0 0 0}$
Effective length factor for torsion
$K_{\text {Lt.A }}=1.000$
$K_{L T} . \mathrm{B}=1.000$
Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{f}_{\mathrm{y}}\right]=0.92
$$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{d}=146.8 \mathrm{~mm}$
$c / t_{w}=33.1 \times \varepsilon<=72 \times \varepsilon$
Class 1
Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section
$\mathrm{c}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \times \mathrm{r}\right) / 2=\mathbf{4 0 . 6} \mathrm{mm}$
c $/ \mathrm{t}_{\mathrm{f}}=5.6 \times \varepsilon<=9 \times \varepsilon$
Class 1
Section is class 1

Check shear - Section 6.2.6

Height of web
$h_{w}=h-2 \times t_{f}=162 \mathrm{~mm}$
Shear area factor
$\eta=1.000$
$h_{w} / t_{w}<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
Design shear force
$\mathrm{V}_{\mathrm{Ed}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=30.7 \mathrm{kN}$
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=985 \mathrm{~mm}^{2}$
$\mathrm{V}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{V}_{\mathrm{pl}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{v}} \times\left(\mathrm{f}_{\mathrm{y}} / \sqrt{ }[3]\right) / \gamma_{\mathrm{m} 0}=156.4 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

PlanningApplications.com
Summer House, Upper Court Road Woldingham Surrey CR3 7BF support@planningapplications.com 07922148701

Project Front Bay - Upper Structural Frame work				Job no.$2023-7459$	
Calcs for Mr Shy Iqbal - 93 Bishopton Rd Stockton-on-Tees TS18 4PG				Start page	vision
Calcs by SB	Calcs date 16/10/2023	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023

Check bending moment major ($y-y$) axis - Section 6.2.5

Design bending moment
$M_{E d}=\max \left(a b s\left(M_{s 1 _\max }\right), a b s\left(M_{s 1 _ \text {min }}\right)\right)=13.4 \mathrm{kNm}$
Design bending resistance moment - eq 6.13
$M_{c, R d}=M_{p l, R d}=W_{p l . y} \times f_{y} / \gamma_{\mathrm{M} 0}=47.1 \mathrm{kNm}$
Slenderness ratio for lateral torsional buckling
Correction factor - Table 6.6
$\mathrm{k}_{\mathrm{c}}=0.94$
$C_{1}=1 / k_{c}{ }^{2}=1.132$
Curvature factor
$g=\sqrt{ }\left[1-\left(I_{z} / I_{y}\right)\right]=0.948$
Poissons ratio
$v=0.3$
Shear modulus
$G=E /[2 \times(1+v)]=\mathbf{8 0 7 6 9} \mathrm{N} / \mathrm{mm}^{2}$
Unrestrained length
$\mathrm{L}=1.0 \times \mathrm{L}_{\mathrm{s} 1}=\mathbf{1 7 5 0} \mathbf{~ m m}$
Elastic critical buckling moment
$M_{\text {cr }}=C_{1} \times \pi^{2} \times E \times I_{z} /\left(L^{2} \times g\right) \times \sqrt{ }\left[I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right]=$
116.2 kNm

Slenderness ratio for lateral torsional buckling
Limiting slenderness ratio
$\bar{\lambda}_{L T}=\sqrt{ }\left(W_{\text {pl. } y} \times f_{y} / M_{c r}\right)=\mathbf{0 . 6 3 7}$
$\bar{\lambda}_{L T, 0}=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, O}$-Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Buckling curve - Table 6.5
Imperfection factor - Table 6.3
Correction factor for rolled sections
LTB reduction determination factor
LTB reduction factor - eq 6.57
Modification factor
Modified LTB reduction factor - eq 6.58
Design buckling resistance moment - eq 6.55
b
$\alpha_{L T}=0.34$
$\beta=0.75$
$\phi_{L T}=0.5 \times\left[1+\alpha_{L T} \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right]=\mathbf{0 . 6 9 2}$
$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T^{2}}\right)\right], 1,1 / \bar{\lambda}_{L T^{2}}\right)=0.900$
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=0.972$
$\chi_{L T, \text { mod }}=\min \left(\chi_{L T} / f, 1\right)=0.927$
$M_{b, R d}=\chi L T, \bmod \times W_{\text {pl. } . ~} \times f_{y} / \gamma_{M 1}=43.6 \mathrm{kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads
Limiting deflection
$\delta_{\text {lim }}=L_{s 1} / 360=4.9 \mathrm{~mm}$
Maximum deflection span 1
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=0.3 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

Check - capacity of the fillet welds connecting the beam web to the beam web - beams A, B, C
Effective throat size of weld $a_{\text {weld }}=s_{\text {weld }} \times 0.7=4.2 \mathrm{~mm}$

Effective length of weld $I_{\text {weld }}=2 \times\left(\min \left(l_{\text {endplate }}, 2 \times r_{\text {supported }}+d_{\text {supported }}\right)-2 \times S_{\text {weld }}\right)=276.0 \mathrm{~mm}$ Design strength of weld $p_{\text {weld }}=220 \mathrm{~N} / \mathrm{mm}^{2}$
Capacity of fillet welds $P_{\text {weld }}=p_{\text {weld }} \times I_{\text {weld }} \times a_{\text {weld }}=255.0 \mathrm{kN}$
Utilisation factor $U_{\text {check5weld }}=Q / P_{\text {weld }}=0.196$

