

Project					Job no.		
Front Bay - Upper Structural Frame work				2023-7459			
Calcs for					Start page no./Revision		
Mr	Mr Shy Iqbal - 93 Bishopton Rd Stockton-on-Tees TS18 4PG					1	
Calcs	by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	SB	16/10/2023	DB	16/10/2023	SB	16/10/2023	

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Calcs for Beam A, B, C - all 3 beams support loads and conditions are the same. Beam A 1750mm long, Beam B 1000mm long, Beam C 500mm long. The calculations are based the longest beam, Beam A. All Beams PASS.

PlanningApplications.com

Summer House, Upper Court Road Woldingham Surrey CR3 7BF

support@planningapplications.com 07922 148 701

Project		Job no.			
Front Bay - Upper Structural Frame work				2023-7459	
Calcs for		Start page no./Revision			
Mr Shy Iqbal	- 93 Bishopton R	2			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
SB	16/10/2023	DB	16/10/2023	SB	16/10/2023

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Beam loads Permanent self weight of beam × 1

Permanent full UDL 18 kN/m Variable full UDL 7 kN/m

Load combinations

Load combination 1 Support A Permanent × 1.35

Variable × 1.50
Permanent × 1.35
Variable × 1.50
Permanent × 1.35

Support B Permanent × 1.

 $Variable \times 1.50 \\$

Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 15.9 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 6.1 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 30.7 \text{ kN}$ $R_{B_min} = 30.7 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent}$ = 15.9 kN Unfactored variable load reaction at support B $R_{B_Variable}$ = 6.1 kN

Section details

Section type UB 178x102x19 (BS4-1)

Steel grade \$275 EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element $t = max(t_f, t_w) = 7.9 \text{ mm}$

 $\label{eq:Nominal yield strength} \mbox{Nominal ultimate tensile strength} \mbox{f}_{\mbox{y}} = \mbox{275 N/mm}^2 \\ \mbox{Nominal ultimate tensile strength} \mbox{f}_{\mbox{u}} = \mbox{410 N/mm}^2 \\ \mbox{Modulus of elasticity} \mbox{E} = \mbox{210000 N/mm}^2 \\ \mbox{Nominal ultimate tensile strength} \mbox{Modulus of elasticity} \mbox{E} = \mbox{210000 N/mm}^2 \\ \mbox{Nominal ultimate tensile strength} \mbox{Nominal ultimate tensile streng$

PlanningApplications.com

Summer House, Upper Court Road Woldingham Surrey CR3 7BF

support@planningapplications.com 07922 148 701

Project		Job no.			
Front Bay - Upper Structural Frame work				2023-7459	
Calcs for Mr Shy Iqbal	- 93 Bishopton R	Start page no./Revision			
Calcs by SB	Calcs date 16/10/2023	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023

Partial factors - Section 6.1

Resistance of cross-sections γ_{M0} = 1.00 Resistance of members to instability γ_{M1} = 1.00 Resistance of tensile members to fracture γ_{M2} = 1.10

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis $K_y = 1.000$ Effective length factor in minor axis $K_z = 1.000$ Effective length factor for torsion $K_{LT.A} = 1.000$ $K_{LT.B} = 1.000$

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 146.8 mm

c / t_w = 33.1 × ϵ <= 72 × ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 40.6 \text{ mm}$

c / t_f = 5.6 × ϵ <= 9 × ϵ Class 1

Section is class 1

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 162 \text{ mm}$

Shear area factor $\eta = 1.000$

 $h_w / t_w < 72 \times \epsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 30.7 \text{ kN}$

Shear area - cl 6.2.6(3) $A_v = \max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = 985 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y / \sqrt{[3]}) / \gamma_{M0} = \textbf{156.4 kN}$

PASS - Design shear resistance exceeds design shear force

PlanningApplications.com

Summer House, Upper Court Road Woldingham Surrey CR3 7BF

support@planningapplications.com 07922 148 701

Р	roject		Job no.			
Front Bay - Upper Structural Frame work				2023-7459		
-	^{alcs for} Mr Shy Iqbal -	93 Bishopton Ro	Start page no./Revision 4			
С	alcs by SB	Calcs date 16/10/2023	Checked by DB	Checked date 16/10/2023	Approved by SB	Approved date 16/10/2023

Check bending moment major (y-y) axis - Section 6.2.5

Design bending moment $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 13.4 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 47.1 \text{ kNm}$

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 $k_c = 0.94$

 $C_1 = 1 / k_c^2 = 1.132$

Curvature factor $g = \sqrt{[1 - (I_z / I_y)]} = 0.948$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$

Unrestrained length $L = 1.0 \times L_{s1} = 1750 \text{ mm}$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$

116.2 kNm

Slenderness ratio for lateral torsional buckling $\bar{\lambda}_{LT} = \sqrt{(W_{pl.y} \times f_y / M_{cr})} = 0.637$

Limiting slenderness ratio $\bar{\lambda}_{LT,0} = 0.4$

 $\bar{\lambda}_{LT} > \bar{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Design resistance for buckling - Section 6.3.2.1

Buckling curve - Table 6.5

 $\begin{array}{ll} \text{Imperfection factor - Table 6.3} & \alpha_{\text{LT}} = \textbf{0.34} \\ \text{Correction factor for rolled sections} & \beta = \textbf{0.75} \end{array}$

Modified LTB reduction factor - eq 6.58 $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.927$

Design buckling resistance moment - eq 6.55 $M_{b,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = 43.6 \text{ kNm}$

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

Limiting deflection $\delta_{lim} = L_{s1} / 360 = 4.9 \text{ mm}$

Maximum deflection span 1 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.3 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Check - capacity of the fillet welds connecting the beam web to the beam web - beams A, B,C

Effective throat size of weld $a_{weld} = s_{weld} \times 0.7 = 4.2 \text{ mm}$

Effective length of weld $I_{weld} = 2 \times (min(I_{endplate}, 2 \times r_{supported} + d_{supported}) - 2 \times s_{weld}) = 276.0 \text{ mm}$

Design strength of weld $p_{weld} = 220 \text{ N/mm}^2$

Capacity of fillet welds $P_{weld} = p_{weld} \times I_{weld} \times a_{weld} = 255.0 \text{ kN}$

Utilisation factor Ucheck5weld = Q / Pweld = 0.196

Capacity of fillet weld: PASS