PlanningApplications.com
Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701

Project BEAM 4 (2 No. 203x133x25kgUB) bolted together min 0.4 m				$\begin{aligned} & \text { Job no. } 2023-7459 \end{aligned}$	
Safdar Zia - 313 Sandy Lane Manchester				Start page no./Revision 1	
Calcs by SB	Calcs date 17/09/2023	Checked by DB	Checked date 17/09/2023	Approved by SB	Approved date 17/09/2023

STEEL BEAM ANALYSIS \& DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Load Combination 1 (shown in proportion)

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project BEAM 4 (2 No. 203x133x25kgUB) bolted together min 0.4 m				$\begin{array}{\|ll\|} \hline \text { Job no. } & \\ & 2023-7459 \end{array}$	
	Calcs for Safdar Zia - 313 Sandy Lane Manchester				Start page no./Revision 2	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 17 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 17 / 09 / 2023 \end{array}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ \text { 17/09/2023 } \\ \hline \end{array}$

Support conditions

Support A	Vertically restrained
Rotationally free	
Support B	Vertically restrained
	Rotationally free

Applied loading

Beam loads
Permanent self weight of beam $\times 1$
Permanent full UDL $30 \mathrm{kN} / \mathrm{m}$
Variable full UDL $10 \mathrm{kN} / \mathrm{m}$

Load combinations

Load combination 1

Support A	Permanent $\times 1.35$
	Variable $\times 1.50$
	Permanent $\times 1.35$
Support B	Variable $\times 1.50$
	Permanent $\times 1.35$
	Variable $\times 1.50$

Analysis results

Maximum moment
Maximum moment span 1 segment 1
Maximum moment span 1 segment 2
Maximum moment span 1 segment 3
Maximum moment span 1 segment 4
Maximum shear
Maximum shear span 1 segment 1
Maximum shear span 1 segment 2
Maximum shear span 1 segment 3
$M_{\text {max }}=137.8 \mathrm{kNm}$
$\mathrm{M}_{\text {s1_seg1_max }}=\mathbf{1 0 2 . 9} \mathbf{k N m}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg2_max }}=137.8 \mathrm{kNm}$
$M_{\text {s1_seg3_max }}=137.8 \mathrm{kNm}$
$\mathrm{M}_{\text {s1_seg4_max }}=104.7 \mathrm{kNm}$
$\mathrm{V}_{\text {max }}=124.4 \mathrm{kN}$
$V_{\text {s1_seg1_max }}=\mathbf{1 2 4 . 4} \mathrm{kN}$
$V_{\text {s1_seg2_max }}=\mathbf{6 2 . 6} \mathrm{kN}$
$V_{s 1} 1_{\text {seg }}{ }^{\text {_max }}=0.8 \mathrm{kN}$
Maximum shear span 1 segment 4
$\mathrm{V}_{\text {s1_seg4_max }}=0 \mathrm{kN}$
Deflection segment 5
$\delta_{\text {max }}=5.1 \mathrm{~mm}$
Maximum reaction at support A
Unfactored permanent load reaction at support A
Unfactored variable load reaction at support A
Maximum reaction at support B
Unfactored permanent load reaction at support B
Unfactored variable load reaction at support B
$\mathrm{R}_{\mathrm{A}_{-\max }}=124.4 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{\text {_Permanent }}}=\mathbf{6 7 . 5} \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{\mathrm{B}} \text { Variable }}=22.1 \mathrm{kN}$
$R_{B_{_} \max }=124.4 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B}_{\mathrm{B}} \text { Permanent }}=\mathbf{6 7 . 5} \mathrm{kN}$
$\mathrm{R}_{\mathrm{B} \text { _Variable }}=\mathbf{2 2 . 2} \mathrm{kN}$

Section details

Section type
Steel grade
$2 \times$ UB $203 \times 133 \times 25$ (BS4-1)
S275
$M_{\text {min }}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg1_min }}=\mathbf{0} \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg2_min }}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 \text { _seg } 3 \text { _min }}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 _ \text {seg4_min }}=0 \mathrm{kNm}$
$V_{\text {min }}=-124.4 \mathrm{kN}$
$\mathrm{V}_{\mathrm{s} 1 _ \text {seg1_min }}=0 \mathrm{kN}$
$\mathrm{V}_{\mathrm{s} 1 _ \text {seg2_min }}=\mathbf{0} \mathrm{kN}$
$V_{\text {s1_seg3_min }}=\mathbf{- 6 0 . 9} \mathrm{kN}$
$\mathrm{V}_{\text {s1_seg4_min }}=\mathbf{- 1 2 4 . 4} \mathrm{kN}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A} _ \text {min }=124.4 \mathrm{kN}, ~}^{\text {n }}$
$R_{B_{\text {_min }}}=124.4 \mathrm{kN}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF port@planningapplications.com 07922 148701	Project BEAM 4 (2 No. 203x133x25kgUB) bolted together min 0.4 m				Job no.2023-7459	
	Calcs for	Safdar Zia - 313 Sandy Lane Manchester		ester	Start page no./Revision 3	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 17 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{c\|} \hline \text { Checked date } \\ 17 / 09 / 2023 \end{array}$	Approved by SB	$\begin{array}{\|c\|} \hline \text { Approved date } \\ \hline 17 / 09 / 2023 \end{array}$

EN 10025-2:2004-Hot rolled products of structural steels

Nominal thickness of element	$t=\max \left(\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}\right)=\mathbf{7 . 8} \mathrm{mm}$
Nominal yield strength	$\mathrm{f}_{\mathrm{y}}=\mathbf{2 7 5 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
Nominal ultimate tensile strength	$\mathrm{f}_{\mathrm{u}}=\mathbf{4 1 0 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
Modulus of elasticity	$E=\mathbf{2 1 0 0 0 0 ~ N} / \mathrm{mm}^{2}$

Partial factors - Section 6.1
Resistance of cross-sections
$\gamma_{\mathrm{M} 0}=1.00$
Resistance of members to instability
$\gamma_{\mathrm{M} 1}=1.00$
Resistance of tensile members to fracture
$\gamma_{\mathrm{M} 2}=1.10$
Lateral restraint
Span 1 has lateral restraint at supports plus $1100 \mathrm{~mm}, 2200 \mathrm{~mm}$ and
3300 mm
Effective length factors
Effective length factor in major axis
$\mathrm{K}_{\mathrm{y}}=1.000$
Effective length factor in minor axis
$K_{z}=1.000$
Effective length factor for torsion
$K_{\text {LT.A }}=1.000$
$K_{L T} . \mathrm{B}=1.000$
Classification of cross sections - Section 5.5
$\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{fy}\right]=0.92$
Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{d}=172.4 \mathrm{~mm}$
$\alpha=\min \left(\left[\mathrm{h} / 2+\mathrm{N}_{\mathrm{Ed}} /\left(2 \times \mathrm{N} \times \mathrm{t}_{\mathrm{w}} \times \mathrm{f}_{\mathrm{y}}\right)-\left(\mathrm{t}_{\mathrm{f}}+\mathrm{r}\right)\right] / \mathrm{c}, 1\right)=0.778$
$c / t_{w}=32.7 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad$ Class 1
Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section
$\mathrm{c}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \times \mathrm{r}\right) / 2=\mathbf{5 6 . 1} \mathrm{mm}$
c $/ \mathrm{t}_{\mathrm{f}}=7.8 \times \varepsilon<=9 \times \varepsilon \quad$ Class 1
Section is class 1
Check shear - Section 6.2.6
Height of web $\quad h_{w}=h-2 \times t_{f}=187.6 \mathrm{~mm}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 4 (2 No. $203 \times 133 \times 25 \mathrm{~kg} \mathrm{UB}$) bolted together min 0.4 m				$\begin{aligned} & \text { Job no. } 2023-7459 \end{aligned}$	
	Calcs for				Start page no./Revision 4	
	Calcs by SB	Calcs date 17/09/2023	Checked by DB	Checked date 17/09/2023	Approved by SB	Approved date $17 / 09 / 2023$

Shear area factor
$\eta=1.000$
$h_{w} / t_{w}<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
Design shear force
$\mathrm{V}_{\mathrm{Ed}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=124.4 \mathrm{kN}$
Shear area - cl 6.2.6(3)
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=1282 \mathrm{~mm}^{2}$
Design shear resistance -cl 6.2.6(2)
$V_{c, R d}=V_{p l, R d}=N \times A_{v} \times\left(f_{y} / \sqrt{ }[3]\right) / \gamma_{M 0}=407.1 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force
Check bending moment at span 1 segment 3 major ($y-y$) axis - Section 6.2.5
Design bending moment $\quad M_{E d}=\max \left(a b s\left(M_{s 1 _ \text {seg3_max }}\right)\right.$, $\left.a b s\left(M_{s 1_{-} s e g 3 _m i n}\right)\right)=137.8 \mathrm{kNm}$
Design bending resistance moment - eq 6.13
$M_{c, R d}=M_{p l, R d}=N \times W_{\text {pl. }} \times f_{y} / \gamma_{\mathrm{MO}}=141.8 \mathrm{kNm}$
Slenderness ratio for lateral torsional buckling
Correction factor - Table 6.6
$\mathrm{k}_{\mathrm{c}}=0.971$
$\mathrm{C}_{1}=1 / \mathrm{k}_{\mathrm{c}}{ }^{2}=1.062$
Curvature factor
$g=\sqrt{ }\left[1-\left(I_{z} / I_{y}\right)\right]=0.932$
Poissons ratio
Shear modulus
$v=0.3$
$\mathrm{G}=\mathrm{E} /[2 \times(1+\mathrm{v})]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
Unrestrained length
$L=1.0 \times L_{\text {s1_seg } 3}=1100 \mathrm{~mm}$
Elastic critical buckling moment
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} /\left(L^{2} \times g\right) \times \sqrt{ }\left[I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right]=$ 613.8 kNm

Slenderness ratio for lateral torsional buckling
$\bar{\lambda}_{\text {LT }}=\sqrt{ }\left(W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{M}_{\text {cr }}\right)=\mathbf{0 . 3 4}$
Limiting slenderness ratio
$\bar{\lambda}_{L T}, 0=0.4$
$\bar{\lambda}_{L T}<\bar{\lambda}_{L T, O}$-Lateral torsional buckling can be ignored
Design resistance for buckling - Section 6.3.2.1
Buckling curve - Table 6.5
b
Imperfection factor - Table 6.3
$\alpha_{\text {LT }}=0.34$
Correction factor for rolled sections
$\beta=0.75$
LTB reduction determination factor
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T}{ }^{2}\right]=0.533$
LTB reduction factor - eq 6.57
$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T}{ }^{2}\right)\right], 1,1 / \bar{\lambda}_{L T}{ }^{2}\right)=1.000$
Modification factor
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=0.992$
$\chi_{L T, \text { mod }}=\min \left(\chi_{L T} / \mathrm{f}, 1\right)=1.000$
$M_{b, R d}=\chi L T, \bmod \times N \times W_{\text {pl. } . ~} \times f_{y} / \gamma_{M 1}=141.8 \mathrm{kNm}$
PASS - Design buckling resistance moment exceeds design bending moment
Check compression - Section 6.2.4

Design compression force
Design resistance of section - eq 6.10
Slenderness ratio for major ($y-y$) axis buckling
Critical buckling length
Critical buckling force
Slenderness ratio for buckling - eq 6.50
$\mathrm{N}_{\mathrm{Ed}}=300 \mathrm{kN}$
$N_{c, R d}=N_{p l, R d}=N \times A \times f_{y} / \gamma_{\mathrm{mo}}=1758.3 \mathrm{kN}$
$L_{c r, y}=L_{s 1} \times K_{y}=4430 \mathrm{~mm}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{y}}=\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}}{ }^{2}=\mathbf{2 4 7 1 . 5} \mathrm{kN}$
$\bar{\lambda}_{y}=\sqrt{ }\left[A \times f_{y} / N_{c r, y}\right]=0.596$

Design resistance for buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
a
$\alpha_{y}=0.21$
$\phi_{y}=0.5 \times\left[1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right]=0.719$
$\chi_{y}=\min \left(1 /\left[\phi_{y}+\sqrt{ }\left(\phi_{y}{ }^{2}-\bar{\lambda}_{y}{ }^{2}\right)\right], 1\right)=0.891$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	ProjectBEAM 4 (2 No. $203 \times 133 \times 25 \mathrm{kgUB}$) bolted together min 0.4 m				Job no.2023-7459	
	Safdar Zia - 313 Sandy Lane Manchester				Start page no./Revision 5	
	Calcs by SB	$\begin{aligned} & \hline \text { Calcs date } \\ & 17 / 09 / 2023 \end{aligned}$	Checked by DB	$\begin{array}{\|l\|} \hline \text { Checked date } \\ \hline 17 / 09 / 2023 \end{array}$	Approved by SB	Approved date $17 / 09 / 2023$

Design buckling resistance - eq 6.47
$N_{b, y, R d}=\chi_{y} \times N \times A \times f_{y} / \gamma_{M 1}=1567.2 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force
Slenderness ratio for minor (z-z) axis buckling
Critical buckling length
$\mathrm{L}_{\mathrm{cr}, \mathrm{z}}=\mathrm{L}_{\mathrm{s} 1 \text { _seg } 3} \times \mathrm{K}_{\mathrm{z}}=\mathbf{1 1 0 0} \mathbf{~ m m}$
Critical buckling force
$\mathrm{N}_{\mathrm{cr}, \mathrm{z}}=\pi^{2} \times \mathrm{E}_{\mathrm{SEC} 3} \times \mathrm{I}_{\mathrm{z}} / \mathrm{L}_{\mathrm{cr}, \mathrm{z}^{2}}=\mathbf{5 2 6 9 . 4} \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50
$\bar{\lambda}_{z}=\sqrt{ }\left[A \times f_{y} / N_{c r, z}\right]=0.408$
Design resistance for buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
b
$\alpha_{z}=0.34$
$\phi_{z}=0.5 \times\left[1+\alpha_{z} \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right]=0.619$
$\chi_{z}=\min \left(1 /\left[\phi_{z}+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right], 1\right)=0.923$
$\mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{\mathrm{z}} \times \mathrm{N} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=1622.3 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force
Check torsional and torsional-flexural buckling - Section 6.3.1.4
Torsional buckling length factor
$\mathrm{K}_{\mathrm{T}}=\mathbf{1 . 0 0}$
Torsional buckling length
$L_{\text {cr, }, T}=\max \left(L_{s 1}, L_{s 1}{ }_{\text {_seg }}\right) \times K_{T}=4430 \mathrm{~mm}$
Distance from shear centre to centroid in y axis
Distance from shear centre to centroid in z axis
Radius of gyration
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{z}_{0}=0.0 \mathrm{~mm}$
$\mathrm{i}_{0}=\sqrt{ }\left[\mathrm{i}_{\mathrm{y}}{ }^{2}+\mathrm{i}_{z}{ }^{2}\right]=\mathbf{9 1 . 0 ~ m m}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}_{0}{ }^{2} \times\left[\mathrm{G} \times \mathrm{I}_{\mathrm{t}}+\pi^{2} \times \mathrm{E}_{\text {SEC } 3} \times \mathrm{I}_{\mathrm{w}} / \mathrm{L}_{\mathrm{cr}, \mathrm{T}^{2}}\right]=956 \mathrm{kN}$
$\beta_{\mathrm{T}}=1-\left(\mathrm{y}_{0} / \mathrm{i}_{0}\right)^{2}=1.000$
Torsion factor

Elastic critical torsional-flexural buckling force

$$
N_{c r, T F}=N_{c r, y} /\left(2 \times \beta_{T}\right) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / i_{0}\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=956 \mathrm{kN}
$$

Elastic critical buckling force
$\mathrm{N}_{\mathrm{cr}}=\min \left(\mathrm{N}_{\text {cr }, \mathrm{T}}, \mathrm{N}_{\text {cr, }, \mathrm{TF}}\right)=\mathbf{9 5 6} \mathrm{kN}$
Slenderness ratio for torsional buckling - eq 6.52
$\bar{\lambda}_{T}=\sqrt{ }\left[\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{N}_{\mathrm{cr}}\right]=0.959$
Design resistance for buckling - Section 6.3.1.1

Buckling curve - Table 6.2
b
$\alpha_{T}=0.34$
$\phi_{T}=0.5 \times\left[1+\alpha_{T} \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}_{T}{ }^{2}\right]=1.089$
$\chi_{T}=\min \left(1 /\left[\phi_{T}+\sqrt{ }\left(\phi_{T}{ }^{2}-\bar{\lambda}_{T^{2}}\right)\right], 1\right)=\mathbf{0 . 6 2 3}$
$N_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi_{\mathrm{T}} \times \mathrm{N} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=1095.8 \mathrm{kN}$
PASS - Design buckling resistance exceeds design compression force
Combined bending and axial force - Section 6.2.9
Normal force to plastic resistance force ratio $\quad n=N_{E d} / N_{p l, R d}=0.17$
Web area to gross area ratio
Design plastic moment resistance - eq 6.13
Reduced plastic moment resistance - eq 6.36
$\mathrm{a}_{\mathrm{w}}=\min \left(\left(\mathrm{A}-2 \times \mathrm{b} \times \mathrm{t}_{\mathrm{f}}\right) / \mathrm{A}, 0.5\right)=0.35$
$M_{p l, R d}=N \times W_{\text {pl. } .} \times f_{y} / \gamma_{\mathrm{m} 0}=141.8 \mathrm{kNm}$
$M_{N, R d}=M_{p l, R d} \times \min \left((1-n) /\left(1-0.5 \times a_{w}\right), 1\right)=141.8 \mathrm{kNm}$

PASS-Reduced bending resistance moment exceeds design bending moment
Check combined bending and compression - Section 6.3.3
Equivalent uniform moment factors - Table B. 3
$\mathrm{M}_{\mathrm{hy}}=0 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{sy}}=138 \mathrm{kNm}$
$\psi_{y}=1.000$
$\alpha_{\text {hy }}=M_{\text {hy }} / M_{\text {sy }}=\mathbf{0 . 0 0 0}$
$C_{m y}=0.95+0.05 \times \alpha_{h y}=\mathbf{0 . 9 5 0}$

PlanningApplications.com Summer House, Upper Court Road Woldingham SURREY CR3 7BF support@planningapplications.com 07922 148701	Project BEAM 4 (2 No. 203x133x25kgUB) bolted together min 0.4 m				Job no.2023-7459	
	Calcs for				Start page no./Revision 6	
	Calcs by SB	Calcs date 17/09/2023	Checked by DB	Checked date 17/09/2023	Approved by SB	Approved date 17/09/2023

$$
\begin{aligned}
& M_{\mathrm{hz}}=0 \mathrm{kNm} \\
& \mathrm{M}_{\mathrm{sz}}=0 \mathrm{kNm} \\
& \psi_{\mathrm{z}}=1.000 \\
& \mathrm{C}_{\mathrm{mz}}=0.6+0.4 \times \psi_{\mathrm{z}}=1.000 \\
& \mathrm{M}_{\mathrm{hLT}}=138 \mathrm{kNm} \\
& \mathrm{M}_{\mathrm{sLT}}=130 \mathrm{kNm} \\
& \psi_{\text {LT }}=0.760 \\
& \alpha_{\text {sLT }}=M_{\text {sLT }} / M_{\mathrm{hLT}}=0.942 \\
& C_{\mathrm{mLT}}=\max \left(0.2+0.8 \times \alpha_{\text {sLT }}, 0.4\right)=0.953
\end{aligned}
$$

Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2
Characteristic moment resistance
Characteristic resistance to normal force Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62
$M_{R k}=N \times W_{\text {pl. }} \times f_{y}=141.8 \mathrm{kNm}$
$N_{R k}=N \times A \times f_{y}=1758.3 \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left[1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right]=1.022$
$\mathrm{k}_{\mathrm{zy}}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\left(\mathrm{C}_{\text {mLT }}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=\mathbf{0 . 9 8 9}$
$N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma_{M 1}\right)+k_{y y} \times M_{E d} /\left(\chi_{L T} \times M_{R k} / \gamma_{M 1}\right)=1.185$
$N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma_{M 1}\right)+k_{z y} \times M_{E d} /\left(\chi L T \times M_{R k} / \gamma_{M 1}\right)=1.146$
FAIL - Combined bending and compression checks are not satisfied
Check vertical deflection - Section 7.2.1
Consider deflection due to variable loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{\text {s1 }} / 360=12.3 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=5.102 \mathrm{~mm}$

