PlanningApplications.com	Project	Project ref
Summer House, Upper Court Road, SURREY. CR3 7BF	Loft Conversion - 2 Trimmers for Staircase Opening	2023-7459
0203 294 9477 www.planningapplications.com support@planningapplications.com	Calcs for Mr Andrew Rose	Date 18 May 2023

Timber Beam Design (BS 5268-2:2002)

2 No. x 2 x 47x200mm C24 grade timber bolted together to form trimmers around staircase opening (Both long sides parallel to staircase).

Beam details

Beam	94 x 200 mm (2 x 47x200 mm) C24 Grade Timber	Width
Timber strength class	C24	
Service class of timber	2	Depth
Width	b = 94 mm	
Depth	h = 200 mm	▼

Span details		Bearing length	Bearing length
Beam clear span	L _{cl} = 2.95 m	<	→
Bearing length	L _b = 160 mm	Clear s	pan
Beam effective span	$L_{eff} = L_{cl} + (2 \times (L_b / 2)) = 3.11 \text{ m}$	21	V
		Diagrams not to scale	

Loading details

······	Load 1: UDL - Timber floor (domestic dwelling)	
	Dead load	$F_{d,1} = 0.6 \text{ kN/m}^2 \times 1.5 \text{ m} = 0.9 \text{ kN/m}$
	Imposed load	$F_{i,1} = 1.5 \text{ kN/m}^2 \times 1.5 \text{ m} = 2.25 \text{ kN/m}$

Reactions (unfactored)

	Dead	Imposed	Total
Left reaction	1.52 kN	3.50 kN	5.02 kN
Right reaction	1.52 kN	3.50 kN	5.02 kN

	Project Loft Conversion - 2 Trimmers for Staircase Opening	Project ref 2023-7459
0203 294 9477 www.planningapplications.com support@planningapplications.com	Calcs for Mr Andrew Rose	Date 18 May 2023

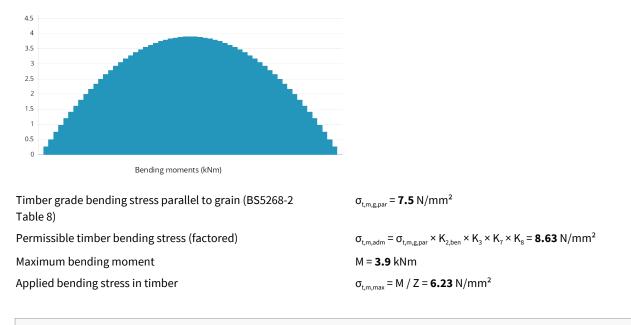
Modification factors

Timber service class modification factor K2 as table 16	
Bending parallel to grain	$K_{2,ben} = 1.00$
Compression perpendicular to grain	K _{2,per} = 1.00
Shear parallel to grain	K _{2,shr} = 1.00
Mean & min modulus of elasticity	K _{2,mod} = 1.00
Load duration factor	K ₃ = 1.00
Bearing modification factor	K ₄ = 1.00
Depth factor (BS5268-2 clause 2.10.6)	$K_7 = (300 / h)^{0.11} = 1.05$
Load sharing modification factor (BS5268-2 clause 2.10.11)	K ₈ = 1.10
Modulus of elasticity modification factor (BS5268-2 clause 2.9)	$K_9 = 1.14$

Modulus of elasticity

Timber minimum modulus of elasticity	E _{min} = 7,200 N/mm ²
The minimum modulus of elasticity modified by the factor	$E = E_{min} \times K_{2,mod} \times K_9 = 8,210 \text{ N/mm}^2$
K9 should be used for deflections	

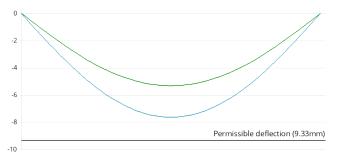
Section properties


Area of section	Area = b × h = 18,800 mm ²
Inertia of timber about xx axis	$I_{xx} = b \times h^3 / 12 = 62,700,000 \text{ mm}^4$
Z to top edge of timber	Z = b × h ² / 6 = 627,000 mm ³
Average density for C24 grade timber (BS 5268-2:2002 Table 8)	$\rho_{mean} = \textbf{420} \text{ kg/m}^3$
Self weight (g = 9.81 m/s ²)	$F_{self} = b \times h \times L_{eff} \times \rho_{mean} \times g = \textbf{241} \ N$

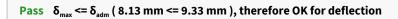
Section design parameters

Design bending moment	M _b = 3,900,000 Nmm
Design shear force	F _{ve} = 5,020 N

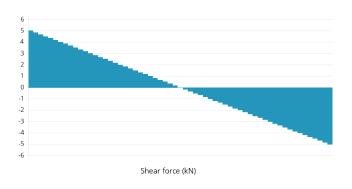
PlanningApplications.com	Project	Project ref
Summer House, Upper Court Road, SURREY. CR3 7BF	Loft Conversion - 2 Trimmers for Staircase Opening	2023-7459
0203 294 9477 www.planningapplications.com support@planningapplications.com	Calcs for Mr Andrew Rose	Date 18 May 2023


Check bending stress

Pass $\sigma_{t,m,max} \le \sigma_{t,m,adm}$ (6.227 N/mm² <= 8.626 N/mm²) applied bending stress in timber within permissible


PlanningApplications.com	Project	Project ref
Summer House, Upper Court Road, SURREY. CR3 7BF	Loft Conversion - 2 Trimmers for Staircase Opening	2023-7459
0203 294 9477 www.planningapplications.com support@planningapplications.com	Calcs for Mr Andrew Rose	Date 18 May 2023

Check deflection (including shear deflection as required by clause 2.10.7)


Live load deflection (green) and total load deflection (blue) in mm

Deflection based on E = 8208 N/mm ²		
Dead load deflection without shear	δ _d = 2.31 mm	
Imposed load deflection without shear	δ_t = 5.33 mm	
Total dead & imposed load deflection	δ _t = 7.64 mm	
Modulus of rigidity	G = E / 16 = 513 N/mm ²	
Shape factor for rectangular section	$K_{F} = 1.2$	
Shear area for beam	A _y = EA / K _F = 15,700 mm ²	
Total dead & imposed load	WT = 10 kN	
If total dead & imposed load applied as a UDL, additional	$\delta_{su} = WT \times L_{eff} \times 10^6 / (8 \times A_v \times G) = 0.486 \text{ mm}$	
deflection due to shear		
Shear deflection	δ_{shear} = δ_{su} × M / (WT × L_{eff} / 8) = 0.486 mm	
Permissible deflection	δ_{adm} = 0.003 × L_{eff} × 10^3 (or max of 14mm) = 9.33 mm	
Total deflection inclusive of shear	$\delta_{max} = \delta_d + \delta_i + \delta_{shear} = 8.13 \text{ mm}$	

Summer House, Upper Court Road, SURREY. CR3 7BF	Project Loft Conversion - 2 Trimmers for Staircase Opening	Project ref 2023-7459
0203 294 9477 www.planningapplications.com support@planningapplications.com	Calcs for Mr Andrew Rose	Date 18 May 2023

Check shear stress

No notches to occur at the critical shear position.

Timber grade shear stress parallel to grain (BS5268-2 Table $\tau_{t,g,par} = 0.71 \text{ N/mm}^2$ 8) $\tau_{t,adm} = \tau_{t,g,par} \times K_{2,shr} \times K_{2,shr}$

Permissible shear force on timber

Design shear force

 $\begin{aligned} \tau_{t,adm} &= \tau_{t,g,par} \times K_{2,shr} \times K_3 \times K_8 = \textbf{0.781} \text{ N/mm}^2 \\ F_{t,adm} &= 2 \times \tau_{t,adm} \times b \times h \ / \ 3 = \textbf{9,790} \text{ N} \\ F_{va} &= \textbf{5,020} \text{ N} \end{aligned}$

Pass $F_{ve} \le F_{t,adm}$ (5019 N <= 9789 N) shear capacity of timber is greater than applied shear force, therefore OK

Check bearing stress

Timber grade compressive stress perpendicular to grain (BS5268-2 Table 8)	$\sigma_{\rm t,c,g,B}=\textbf{1.9}~N/mm^2$
Permissible compressive stress perpendicular to grain (factored)	$\sigma_{t,c,adm} = \sigma_{t,c,g,\mathbb{R}} \times K_{2,per} \times K_3 \times K_4 \times K_8 = \textbf{2.09 N/mm}^2$
Timber bearing stress on support	$\sigma_{t,c,max} = F_{ve} / (L_b \times b) = \textbf{0.334} \text{ N/mm}^2$

Pass $\sigma_{t,c,max} \ll \sigma_{t,c,adm}$ (0.334 N/mm² \ll 2.09 N/mm²) bearing stress is less than permissible timber stress, therefore OK

Design summary

	Permissible	Applied/Actual	Utilisation	Result
Shear force (kN)	9.79	5.02	51.3 %	ОК
Bending stress (N/mm²)	8.63	6.23	72.2 %	ОК
Bearing stress (N/mm ²)	2.09	0.33	16 %	ОК
Deflection (mm)	9.33	8.13	87.1 %	ОК

PlanningApplications.com Summer House, Upper Court Road, SURREY. CR3 7BF 0203 294 9477 www.planningapplications.com support@planningapplications.com	Project Loft Conversion - 2 Trimmers for Staircase Opening	Project ref 2023-7459
	Calcs for Mr Andrew Rose	Date 18 May 2023

Notes

Joists to be bolted together with M12 bolts at 600mm spacings.

This design is in accordance with BS 5268-2:2002 Structural use of timber - Part 2: Code of practice for permissible stress design, materials and workmanship.

The depth to width ratio of the timber does not exceed 5 and as per the requirements of BS 5268-2 Table 19 there is no risk of buckling under design load provided; The ends are held in position and compression edge held in line, as by direct connection of sheathing, deck or joists.

Timber to be covered, this calculation is not to be used for timber which is fully exposed to the elements.

Wane as allowed in BS 4978:2007 + A2:2017 is permitted.